Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

Overview

EarthGAN - Earth Mantle Surrogate Modeling

Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in a web-browser and produce high-fidelity results? We're trying to do just that through the use of a generative adversarial network -- we call ours EarthGAN. We are in active research.

See how EarthGAN currently works! Open up the Colab notebook and create results from the preliminary generator: Open In Colab

compare_epoch41_rindex165_moll

Progress updates, along with my thoughts, can be found in the devlog. The preliminary results were presented at VIS 2021 as part of the SciVis contest. See the paper on arXiv, here.

This is active research. If you have any thoughts, suggestions, or would like to collaborate, please reach out! You can also post questions/ideas in the discussions section.

Source code arXiv

Current Approach

We're leveraging the excellent work of Li et al. who have implemented a GAN for creating super-resolution cosmological simulations. The general method is in their map2map repository. We've used their GAN implementation as it works on 3D data. Please cite their work if you find it useful!

The current approach is based on the StyleGAN2 model. In addition, a conditional-GAN (cGAN) is used to produce results that are partially deterministic.

Setup

Works best if you are in a HPC environment (I used Compute Canada). Also tested locally in linux (MacOS should also work). If you run windows you'll have to do much of the environment setup and data download/preprocessing manually.

To reproduce data pipeline and begin training: *

  1. Clone this repo - clone https://github.com/tvhahn/EarthGAN.git

  2. Create virtual environment. Assumes that Conda is installed when on a local computer.

    • HPC: make create_environment will detect HPC environment and automatically create environment from make_hpc_venv.sh. Tested on Compute Canada. Modify make_hpc_venv.sh for your own HPC cluster.

    • Linux/MacOS: use command from Makefile - `make create_environment

  3. Download raw data.

    • HPC: use make download. Will automatically detect HPC environment.

    • Linux/MacOS: use make download. Will automatically download to appropriate data/raw directory.

  4. Extract raw data.

    • HPC: use make download. Will automatically detect HPC environment. Again, modify for your HPC cluster.
    • Linux/MacOS: use make extract. Will automatically extract to appropriate data/raw directory.
  5. Ensure virtual environment is activated. conda activate earth

  6. From root directory of EarthGAN, run pip install -e . -- this will give the python scripts access to the src folders.

  7. Create the processed data that will be used for training.

    • HPC: use make data. Will automatically detect HPC environment and create the processed data.

      πŸ“ Note: You will have to modify the make_hpc_data.sh in the ./bash_scripts/ folder to match the requirements of your HPC environment

    • Linux/MacOS: use make data.

  8. Copy the processed data to the scratch folder if you're on the HPC. Modify copy_processed_data_to_scratch.sh in ./bash_scripts/ folder.

  9. Train!

    • HPC: use make train. Again, modify for your HPC cluster. Not yet optimized for multi-GPU training, so be warned, it will be SLOW!

    • Linux/MacOS: use make train.

* Let me know if you run into any problems! This is still in development.

Project Organization

β”œβ”€β”€ Makefile           <- Makefile with commands like `make data` or `make train`
β”‚
β”œβ”€β”€ bash_scripts	   <- Bash scripts used in for training models or setting up environment
β”‚   β”œβ”€β”€ train_model_hpc.sh       <- Bash/SLURM script used to train models on HPC (you will need to	modify this to work on your HPC). Called with `make train`
β”‚   └── train_model_local.sh     <- Bash script used to train models locally. Called on with `make train`
β”‚
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ interim        <- Intermediate data before we've applied any scaling.
β”‚   β”œβ”€β”€ processed      <- The final, canonical data sets for modeling.
β”‚   └── raw            <- Original data from Earth Mantle Convection simulation.
β”‚
β”œβ”€β”€ models             <- Trained and serialized models, model predictions, or model summaries
β”‚   └── interim        <- Interim models and summaries
β”‚   └── final          <- Final, cononical models
β”‚
β”œβ”€β”€ notebooks          <- Jupyter notebooks. Generally used for explaining various components
β”‚   β”‚                     of the code base.
β”‚   └── scratch        <- Rough-draft notebooks, of questionable quality. Be warned!
β”‚
β”œβ”€β”€ references         <- Data dictionaries, manuals, and all other explanatory materials.
β”‚
β”œβ”€β”€ reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
β”‚   └── figures        <- Generated graphics and figures to be used in reporting
β”‚
β”œβ”€β”€ requirements.txt   <- Recommend using `make create_environment`. However, can use this file
β”‚                         for to recreate environment with pip
β”œβ”€β”€ envearth.yml       <- Used to create conda environment. Use `make create_environment` when
β”‚                         on local compute				
β”‚
β”œβ”€β”€ setup.py           <- makes project pip installable (pip install -e .) so src can be imported
β”œβ”€β”€ src                <- Source code for use in this project.
β”‚   β”œβ”€β”€ __init__.py    <- Makes src a Python module
β”‚   β”‚
β”‚   β”œβ”€β”€ data           <- Scripts to download or generate data
β”‚   β”‚   β”œβ”€β”€ make_dataset.py			<- Script for making downsampled data from the original
β”‚   β”‚   β”œβ”€β”€ data_prep_utils.py		<- Misc functions used in data prep
β”‚   β”‚   β”œβ”€β”€ download.sh				<- Bash script to download entire Earth Mantle data set
β”‚   β”‚   β”‚  							   (used when `make data` called)
β”‚   β”‚   └──download.sh				<- Bash script to extract all Earth Mantle data set files
β”‚   β”‚    							   from zip (used when `make extract` called)								   
β”‚   β”‚
β”‚   β”œβ”€β”€ models         <- Scripts to train models and then use trained models to make
β”‚   β”‚   β”‚                 predictions
β”‚   β”‚   β”‚
β”‚   β”‚   └── train_model.py
β”‚   β”‚
β”‚   └── visualization  <- Scripts to create exploratory and results oriented visualizations
β”‚       └── visualize.py
β”‚
β”œβ”€β”€ LICENSE
└── README.md          <- README describing project.
You might also like...
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (ΰ€šΰ€Ώΰ€€ΰ₯ΰ€°) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

Language Models Can See: Plugging Visual Controls in Text Generation
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

This is my codes that can visualize the psnr image in testing videos.
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

A library for answering questions using data you cannot see
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

Code and data for the paper
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

Releases(v1.0.0)
  • v1.0.0(Nov 4, 2021)

Owner
Tim
Data science. Innovation. ML practitioner.
Tim
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022