Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

Overview

EarthGAN - Earth Mantle Surrogate Modeling

Can a surrogate model of the Earthโ€™s Mantle Convection data set be built such that it can be readily run in a web-browser and produce high-fidelity results? We're trying to do just that through the use of a generative adversarial network -- we call ours EarthGAN. We are in active research.

See how EarthGAN currently works! Open up the Colab notebook and create results from the preliminary generator: Open In Colab

compare_epoch41_rindex165_moll

Progress updates, along with my thoughts, can be found in the devlog. The preliminary results were presented at VIS 2021 as part of the SciVis contest. See the paper on arXiv, here.

This is active research. If you have any thoughts, suggestions, or would like to collaborate, please reach out! You can also post questions/ideas in the discussions section.

Source code arXiv

Current Approach

We're leveraging the excellent work of Li et al. who have implemented a GAN for creating super-resolution cosmological simulations. The general method is in their map2map repository. We've used their GAN implementation as it works on 3D data. Please cite their work if you find it useful!

The current approach is based on the StyleGAN2 model. In addition, a conditional-GAN (cGAN) is used to produce results that are partially deterministic.

Setup

Works best if you are in a HPC environment (I used Compute Canada). Also tested locally in linux (MacOS should also work). If you run windows you'll have to do much of the environment setup and data download/preprocessing manually.

To reproduce data pipeline and begin training: *

  1. Clone this repo - clone https://github.com/tvhahn/EarthGAN.git

  2. Create virtual environment. Assumes that Conda is installed when on a local computer.

    • HPC: make create_environment will detect HPC environment and automatically create environment from make_hpc_venv.sh. Tested on Compute Canada. Modify make_hpc_venv.sh for your own HPC cluster.

    • Linux/MacOS: use command from Makefile - `make create_environment

  3. Download raw data.

    • HPC: use make download. Will automatically detect HPC environment.

    • Linux/MacOS: use make download. Will automatically download to appropriate data/raw directory.

  4. Extract raw data.

    • HPC: use make download. Will automatically detect HPC environment. Again, modify for your HPC cluster.
    • Linux/MacOS: use make extract. Will automatically extract to appropriate data/raw directory.
  5. Ensure virtual environment is activated. conda activate earth

  6. From root directory of EarthGAN, run pip install -e . -- this will give the python scripts access to the src folders.

  7. Create the processed data that will be used for training.

    • HPC: use make data. Will automatically detect HPC environment and create the processed data.

      ๐Ÿ“ Note: You will have to modify the make_hpc_data.sh in the ./bash_scripts/ folder to match the requirements of your HPC environment

    • Linux/MacOS: use make data.

  8. Copy the processed data to the scratch folder if you're on the HPC. Modify copy_processed_data_to_scratch.sh in ./bash_scripts/ folder.

  9. Train!

    • HPC: use make train. Again, modify for your HPC cluster. Not yet optimized for multi-GPU training, so be warned, it will be SLOW!

    • Linux/MacOS: use make train.

* Let me know if you run into any problems! This is still in development.

Project Organization

โ”œโ”€โ”€ Makefile           <- Makefile with commands like `make data` or `make train`
โ”‚
โ”œโ”€โ”€ bash_scripts	   <- Bash scripts used in for training models or setting up environment
โ”‚   โ”œโ”€โ”€ train_model_hpc.sh       <- Bash/SLURM script used to train models on HPC (you will need to	modify this to work on your HPC). Called with `make train`
โ”‚   โ””โ”€โ”€ train_model_local.sh     <- Bash script used to train models locally. Called on with `make train`
โ”‚
โ”œโ”€โ”€ data
โ”‚   โ”œโ”€โ”€ interim        <- Intermediate data before we've applied any scaling.
โ”‚   โ”œโ”€โ”€ processed      <- The final, canonical data sets for modeling.
โ”‚   โ””โ”€โ”€ raw            <- Original data from Earth Mantle Convection simulation.
โ”‚
โ”œโ”€โ”€ models             <- Trained and serialized models, model predictions, or model summaries
โ”‚   โ””โ”€โ”€ interim        <- Interim models and summaries
โ”‚   โ””โ”€โ”€ final          <- Final, cononical models
โ”‚
โ”œโ”€โ”€ notebooks          <- Jupyter notebooks. Generally used for explaining various components
โ”‚   โ”‚                     of the code base.
โ”‚   โ””โ”€โ”€ scratch        <- Rough-draft notebooks, of questionable quality. Be warned!
โ”‚
โ”œโ”€โ”€ references         <- Data dictionaries, manuals, and all other explanatory materials.
โ”‚
โ”œโ”€โ”€ reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
โ”‚   โ””โ”€โ”€ figures        <- Generated graphics and figures to be used in reporting
โ”‚
โ”œโ”€โ”€ requirements.txt   <- Recommend using `make create_environment`. However, can use this file
โ”‚                         for to recreate environment with pip
โ”œโ”€โ”€ envearth.yml       <- Used to create conda environment. Use `make create_environment` when
โ”‚                         on local compute				
โ”‚
โ”œโ”€โ”€ setup.py           <- makes project pip installable (pip install -e .) so src can be imported
โ”œโ”€โ”€ src                <- Source code for use in this project.
โ”‚   โ”œโ”€โ”€ __init__.py    <- Makes src a Python module
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ data           <- Scripts to download or generate data
โ”‚   โ”‚   โ”œโ”€โ”€ make_dataset.py			<- Script for making downsampled data from the original
โ”‚   โ”‚   โ”œโ”€โ”€ data_prep_utils.py		<- Misc functions used in data prep
โ”‚   โ”‚   โ”œโ”€โ”€ download.sh				<- Bash script to download entire Earth Mantle data set
โ”‚   โ”‚   โ”‚  							   (used when `make data` called)
โ”‚   โ”‚   โ””โ”€โ”€download.sh				<- Bash script to extract all Earth Mantle data set files
โ”‚   โ”‚    							   from zip (used when `make extract` called)								   
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ models         <- Scripts to train models and then use trained models to make
โ”‚   โ”‚   โ”‚                 predictions
โ”‚   โ”‚   โ”‚
โ”‚   โ”‚   โ””โ”€โ”€ train_model.py
โ”‚   โ”‚
โ”‚   โ””โ”€โ”€ visualization  <- Scripts to create exploratory and results oriented visualizations
โ”‚       โ””โ”€โ”€ visualize.py
โ”‚
โ”œโ”€โ”€ LICENSE
โ””โ”€โ”€ README.md          <- README describing project.
You might also like...
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (เคšเคฟเคคเฅเคฐ) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

Language Models Can See: Plugging Visual Controls in Text Generation
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

This is my codes that can visualize the psnr image in testing videos.
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection โ€“ A New

A library for answering questions using data you cannot see
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

Code and data for the paper
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

Releases(v1.0.0)
  • v1.0.0(Nov 4, 2021)

Owner
Tim
Data science. Innovation. ML practitioner.
Tim
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation ๅ‚่€ƒ็ฝ‘ไธŠ็š„Unetๅšๅˆ†ๅ‰ฒ็š„ไปฃ็ ๏ผŒๅšไบ†ไธ€ไธช้’ˆๅฏนkaggleๅœฐ็›่ฏ†ๅˆซ็š„๏ผŒ่ฏทๅŽปไปฅไธ‹ๅœฐๅ€่Žทๅ–ๆ•ฐๆฎ้›†: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

ไธ‡็† 5 Jul 26, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023