Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

Overview

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers

facebook

1   Using Colab

  • Please notice that the notebook assumes that you are using a GPU. To switch runtime go to Runtime -> change runtime type and select GPU.
  • Installing all the requirements may take some time. After installation, please restart the runtime.

2   Running Examples

Notice that we have two jupyter notebooks to run the examples presented in the paper.

  • The notebook for LXMERT contains both the examples from the paper and examples with images from the internet and free form questions. To use your own input, simply change the URL variable to your image and the question variable to your free form question.

    LXMERT.PNG LXMERT-web.PNG
  • The notebook for DETR contains the examples from the paper. To use your own input, simply change the URL variable to your image.

    DETR.PNG

3   Reproduction of results

3.1   VisualBERT

Run the run.py script as follows:

CUDA_VISIBLE_DEVICES=0 PYTHONPATH=`pwd` python VisualBERT/run.py --method=<method_name> --is-text-pert=<true/false> --is-positive-pert=<true/false> --num-samples=10000 config=projects/visual_bert/configs/vqa2/defaults.yaml model=visual_bert dataset=vqa2 run_type=val checkpoint.resume_zoo=visual_bert.finetuned.vqa2.from_coco_train env.data_dir=/path/to/data_dir training.num_workers=0 training.batch_size=1 training.trainer=mmf_pert training.seed=1234

Note

If the datasets aren't already in env.data_dir, then the script will download the data automatically to the path in env.data_dir.

3.2   LXMERT

  1. Download valid.json:

    pushd data/vqa
    wget https://nlp.cs.unc.edu/data/lxmert_data/vqa/valid.json
    popd
  2. Download the COCO_val2014 set to your local machine.

    Note

    If you already downloaded COCO_val2014 for the VisualBERT tests, you can simply use the same path you used for VisualBERT.

  3. Run the perturbation.py script as follows:

    CUDA_VISIBLE_DEVICES=0 PYTHONPATH=`pwd` python lxmert/lxmert/perturbation.py  --COCO_path /path/to/COCO_val2014 --method <method_name> --is-text-pert <true/false> --is-positive-pert <true/false>

3.3   DETR

  1. Download the COCO dataset as described in the DETR repository. Notice you only need the validation set.

  2. Lower the IoU minimum threshold from 0.5 to 0.2 using the following steps:

    • Locate the cocoeval.py script in your python library path:

      find library path:

      import sys
      print(sys.path)

      find cocoeval.py:

      cd /path/to/lib
      find -name cocoeval.py
    • Change the self.iouThrs value in the setDetParams function (which sets the parameters for the COCO detection evaluation) in the Params class as follows:

      insead of:

      self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)

      use:

      self.iouThrs = np.linspace(.2, 0.95, int(np.round((0.95 - .2) / .05)) + 1, endpoint=True)
  3. Run the segmentation experiment, use the following command:

    CUDA_VISIBLE_DEVICES=0 PYTHONPATH=`pwd`  python DETR/main.py --coco_path /path/to/coco/dataset  --eval --masks --resume https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth --batch_size 1 --method <method_name>

4   Credits

Owner
Hila Chefer
MSc Student @ Tel Aviv University & Intern @ Microsoft's Innovation Labs
Hila Chefer
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022