Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

Overview

DocEnTR

Description

Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on top of the vit-pytorch vision transformers library. The proposed model can be used to enhance (binarize) degraded document images, as shown in the following samples.

Degraded Images Our Binarization
1 2
1 2

Download Code

clone the repository:

git clone https://github.com/dali92002/DocEnTR
cd DocEnTr

Requirements

  • install requirements.txt

Process Data

Data Path

We gathered the DIBCO, H-DIBCO and PALM datasets and organized them in one folder. You can download it from this link. After downloading, extract the folder named DIBCOSETS and place it in your desired data path. Means: /YOUR_DATA_PATH/DIBCOSETS/

Data Splitting

Specify the data path, split size, validation and testing sets to prepare your data. In this example, we set the split size as (256 X 256), the validation set as 2016 and the testing as 2018 while running the process_dibco.py file.

python process_dibco.py --data_path /YOUR_DATA_PATH/ --split_size 256 --testing_dataset 2018 --validation_dataset 2016

Using DocEnTr

Training

For training, specify the desired settings (batch_size, patch_size, model_size, split_size and training epochs) when running the file train.py. For example, for a base model with a patch_size of (16 X 16) and a batch_size of 32 we use the following command:

python train.py --data_path /YOUR_DATA_PATH/ --batch_size 32 --vit_model_size base --vit_patch_size 16 --epochs 151 --split_size 256 --validation_dataset 2016

You will get visualization results from the validation dataset on each epoch in a folder named vis+"YOUR_EXPERIMENT_SETTINGS" (it will be created). In the previous case it will be named visbase_256_16. Also, the best weights will be saved in the folder named "weights".

Testing on a DIBCO dataset

To test the trained model on a specific DIBCO dataset (should be matched with the one specified in Section Process Data, if not, run process_dibco.py again). Download the model weights (In section Model Zoo), or use your own trained model weights. Then, run the following command. Here, I test on H-DIBCO 2018, using the Base model with 8X8 patch_size, and a batch_size of 16. The binarized images will be in the folder ./vis+"YOUR_CONFIGS_HERE"/epoch_testing/

python test.py --data_path /YOUR_DATA_PATH/ --model_weights_path  /THE_MODEL_WEIGHTS_PATH/  --batch_size 16 --vit_model_size base --vit_patch_size 8 --split_size 256 --testing_dataset 2018

Demo

To be added ... (Using our Pretrained Models To Binarize A Single Degraded Image)

Model Zoo

In this section we release the pre-trained weights for all the best DocEnTr model variants trained on DIBCO benchmarks.

Testing data Models Patch size URL PSNR
0
DIBCO 2011
DocEnTr-Base 8x8 model 20.81
DocEnTr-Large 16x16 model 20.62
1
H-DIBCO 2012
DocEnTr-Base 8x8 model 22.29
DocEnTr-Large 16x16 model 22.04
2
DIBCO 2017
DocEnTr-Base 8x8 model 19.11
DocEnTr-Large 16x16 model 18.85
3
H-DIBCO 2018
DocEnTr-Base 8x8 model 19.46
DocEnTr-Large 16x16 model 19.47

Citation

If you find this useful for your research, please cite it as follows:

@article{souibgui2022docentr,
  title={DocEnTr: An end-to-end document image enhancement transformer},
  author={ Souibgui, Mohamed Ali and Biswas, Sanket and  Jemni, Sana Khamekhem and Kessentini, Yousri and Forn{\'e}s, Alicia and Llad{\'o}s, Josep and Pal, Umapada},
  journal={arXiv preprint arXiv:2201.10252},
  year={2022}
}

Authors

Conclusion

There should be no bugs in this code, but if there is, we are sorry for that :') !!

Owner
Mohamed Ali Souibgui
PhD Student in Computer Vision
Mohamed Ali Souibgui
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022