IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

Overview

IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020) Tweet

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to your questions. This repo is almost the same with Another-Version, and you can also refer to that version.

Introduction

Abstract

The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such a problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing scalability and performance. In this paper, we propose an instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. Besides, we propose the region-guided regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. Our method is so concise and efficient that it is easy to be generalized to other unsupervised domain adaptation methods. Experiments on 'GTA5 to Cityscapes' and 'SYNTHIA to Cityscapes' demonstrate the superior performance of our approach compared with the state-of-the-art methods.

IAST Overview

Result

source target device GPU memory mIoU-19 mIoU-16 mIoU-13 model
GTA5 Cityscapes Tesla V100-32GB 18.5 GB 51.88 - - download
GTA5 Cityscapes Tesla T4 6.3 GB 51.20 - - download
SYNTHIA Cityscapes Tesla V100-32GB 18.5 GB - 51.54 57.81 download
SYNTHIA Cityscapes Tesla T4 9.8 GB - 51.24 57.70 download

Setup

1) Envs

  • Pytorch >= 1.0
  • Python >= 3.6
  • cuda >= 9.0

Install python packages

$ pip install -r  requirements.txt

apex : Tools for easy mixed precision and distributed training in Pytorch

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

2) Download Dataset

Please download the datasets from these links:

Dataset directory should have this structure:

${ROOT_DIR}/data/GTA5/
${ROOT_DIR}/data/GTA5/images
${ROOT_DIR}/data/GTA5/labels

${ROOT_DIR}/data/SYNTHIA_RAND_CITYSCAPES/RAND_CITYSCAPES
${ROOT_DIR}/data/SYNTHIA_RAND_CITYSCAPES/RAND_CITYSCAPES/RGB
${ROOT_DIR}/data/SYNTHIA_RAND_CITYSCAPES/RAND_CITYSCAPES/GT

${ROOT_DIR}/data/cityscapes
${ROOT_DIR}/data/cityscapes/leftImg8bit
${ROOT_DIR}/data/cityscapes/gtFine

3) Download Pretrained Models

We provide pre-trained models. We recommend that you download them and put them in pretrained_models/, which will save a lot of time for training and ensure consistent results.

V100 models

T4 models

(Optional) Of course, if you have plenty of time, you can skip this step and start training from scratch. We also provide these scripts.

Training

Our original experiments are all carried out on Tesla-V100, and there will be a large number of GPU memory usage (batch_size=8). For low GPU memory devices, we also trained on Tesla-T4 to ensure that most people can reproduce the results (batch_size=2).

Start self-training (download the pre-trained models first)

cd code

# GTA5 to Cityscapes (V100)
sh ../scripts/self_training_only/run_gtav2cityscapes_self_traing_only_v100.sh
# GTA5 to Cityscapes (T4)
sh ../scripts/self_training_only/run_gtav2cityscapes_self_traing_only_t4.sh
# SYNTHIA to Cityscapes (V100)
sh ../scripts/self_training_only/run_syn2cityscapes_self_traing_only_v100.sh
# SYNTHIA to Cityscapes (T4)
sh ../scripts/self_training_only/run_syn2cityscapes_self_traing_only_t4.sh

(Optional) Training from scratch

cd code

# GTA5 to Cityscapes (V100)
sh ../scripts/from_scratch/run_gtav2cityscapes_self_traing_v100.sh
# GTA5 to Cityscapes (T4)
sh ../scripts/from_scratch/run_gtav2cityscapes_self_traing_t4.sh
# SYNTHIA to Cityscapes (V100)
sh ../scripts/from_scratch/run_syn2cityscapes_self_traing_v100.sh
# SYNTHIA to Cityscapes (T4)
sh ../scripts/from_scratch/run_syn2cityscapes_self_traing_t4.sh

Evaluation

cd code
python eval.py --config_file  --resume_from 

Support multi-scale testing and flip testing.

# Modify the following parameters in the config file

TEST:
  RESIZE_SIZE: [[1024, 512], [1280, 640], [1536, 768], [1800, 900], [2048, 1024]] 
  USE_FLIP: False 

Citation

Please cite this paper in your publications if it helps your research:

@article{mei2020instance,
  title={Instance Adaptive Self-Training for Unsupervised Domain Adaptation},
  author={Mei, Ke and Zhu, Chuang and Zou, Jiaqi and Zhang, Shanghang},
  booktitle={European Conference on Computer Vision (ECCV)},
  year={2020}
}

Author

Ke Mei, Chuang Zhu

If you have any questions, you can contact me directly.

Owner
CVSM Group - email: [email protected]
Codes of our papers are released in this GITHUB account.
CVSM Group - email: <a href=[email protected]">
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022