Tf alloc - Simplication of GPU allocation for Tensorflow2

Related tags

Deep Learningtf_alloc
Overview

tf_alloc

Simpliying GPU allocation for Tensorflow

  • Developer: korkite (Junseo Ko)

Installation

pip install tf-alloc

⭐️ Why tf_alloc? Problems?

  • Compare to pytorch, tensorflow allocate all GPU memory to single training.
  • However, it is too much waste because, some training does not use whole GPU memory.
  • To solve this problem, TF engineers use two methods.
  1. Limit to use only single GPU
  2. Limit the use of only a certain percentage of GPUs.
  • However, these methods require complex code and memory management.

⭐️ Why tf_alloc? How to solve?

tf_alloc simplfy and automate GPU allocation using two methods.

⭐️ How to allocate?

  • Before using tf_alloc, you have to install tensorflow fits for your environment.
  • This library does not install specific tensorflow version.
# On the top of the code
from tf_alloc import allocate as talloc
talloc(gpu=1, percentage=0.5)

import tensorflow as tf
""" your code"""

It is only code for allocating GPU in certain percentage.

Parameters:

  • gpu = which gpu you want to use (if you have two gpu than [0, 1] is possible)
  • percentage = the percentage of memory usage on single gpu. 1.0 for maximum use.

⭐️ Additional Function.

GET GPU Objects

gpu_objs = get_gpu_objects()
  • To use this code, you can get gpu objects that contains gpu information.
  • You can set GPU backend by using this function.

GET CURRENT STATE

Defualt
current(
    gpu_id = False, 
    total_memory=False, 
    used = False, 
    free = False, 
    percentage_of_use = False,
    percentage_of_free = False,
)
  • You can use this functions to see current GPU state and possible maximum allocation percentage.
  • Without any parameters, than it only visualize possible maximum allocation percentage.
  • It is cmd line visualizer. It doesn't return values.

Parameters

  • gpu_id = visualize the gpu id number
  • total_memory = visualize the total memory of GPU
  • used = visualize the used memory of GPU
  • free = visualize the free memory of GPU
  • percentage_of_used = visualize the percentage of used memory of GPU
  • percentage_of_free = visualize the percentage of free memory of GPU

한국어는 간단하게!

설치

pip install tf-alloc

문제정의:

  • 텐서플로우는 파이토치와 다르게 훈련시 GPU를 전부 할당해버립니다.
  • 그러나 실제로 GPU를 모두 사용하지 않기 때문에 큰 낭비가 발생합니다.
  • 이를 막기 위해 두가지 방법이 사용되는데
  1. GPU를 1개만 쓰도록 제한하기
  2. GPU에서 특정 메모리만큼만 사용하도록 제한하기
  • 이 두가지 입니다. 그러나 이 방법을 위해선 복잡한 코드와 메모리 관리가 필요합니다.

해결책:

  • 이것을 해결하기 위해 자동으로 몇번 GPU를 얼만큼만 할당할지 정해주는 코드를 만들었습니다.
  • 함수 하나만 사용하면 됩니다.
# On the top of the code
from tf_alloc import allocate as talloc
talloc(gpu=1, percentage=0.5)

import tensorflow as tf
""" your code"""
  • 맨위에 tf_alloc에서 allocate함수를 불러다가 gpu파라미터와 percentage 파라미터를 주어 호출합니다.
  • 그러면 자동으로 몇번의 GPU를 얼만큼의 비율로 사용할지 정해서 할당합니다.
  • 매우 쉽습니다.

파라미터 설명

  • gpu = 몇범 GPU를 쓸 것인지 GPU의 아이디를 넣어줍니다. (만약 gpu가 2개 있다면 0, 1 이 아이디가 됩니다.)

  • percentage = 선택한 GPU를 몇의 비율로 쓸건지 정해줍니다. (1.0을 넣으면 해당 GPU를 전부 씁니다)

  • 만약 percentage가 몇인지 모른다면 0에서 1 사이의 값을 넣어서 할당해보면 최대 사용가능량이 얼만큼이라고 에러를 출력하니까 걱정없이 사용하시면 됩니다. 다른 훈련에 방해를 주지 않기 때문에, nvidia-smi를 쳐가면서 할당을 하는 것보다 매우 안정적입니다.

  • 핵심기능만 한국어로 써 놓았고, 다른 기능은 영문버전을 확인해보시면 감사하겠습니다.

Owner
Junseo Ko
🙃 AI Engineer 😊
Junseo Ko
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022