EsViT: Efficient self-supervised Vision Transformers

Overview

Efficient Self-Supervised Vision Transformers (EsViT)

PWC

PyTorch implementation for EsViT, built with two techniques:

  • A multi-stage Transformer architecture. Three multi-stage Transformer variants are implemented under the folder models.
  • A region-level matching pre-train task. The region-level matching task is implemented in function DDINOLoss(nn.Module) (Line 648) in main_esvit.py. Please use --use_dense_prediction True, otherwise only the view-level task is used.
Efficiency vs accuracy comparison under the linear classification protocol on ImageNet with EsViT
Figure: Efficiency vs accuracy comparison under the linear classification protocol on ImageNet. Left: Throughput of all SoTA SSL vision systems, circle sizes indicates model parameter counts; Right: performance over varied parameter counts for models with moderate (throughout/#parameters) ratio. Please refer Section 4.1 for details.

Pretrained models

You can download the full checkpoint (trained with both view-level and region-level tasks, batch size=512 and ImageNet-1K.), which contains backbone and projection head weights for both student and teacher networks.

arch params linear k-nn download logs
EsViT (Swin-T, W=7) 28M 78.0% 75.7% full ckpt train linear knn
EsViT (Swin-S, W=7) 49M 79.5% 77.7% full ckpt train linear knn
EsViT (Swin-B, W=7) 87M 80.4% 78.9% full ckpt train linear knn
EsViT (Swin-T, W=14) 28M 78.7% 77.0% full ckpt train linear knn
EsViT (Swin-S, W=14) 49M 80.8% 79.1% full ckpt train linear knn
EsViT (Swin-B, W=14) 87M 81.3% 79.3% full ckpt train linear knn

EsViT (Swin-T, W=7) with different pre-train datasets (view-level task only)

arch params batch size pre-train dataset linear k-nn download logs
EsViT 28M 512 ImageNet-1K 77.0% 74.2% full ckpt train linear knn
EsViT 28M 1024 ImageNet-1K 77.1% 73.7% full ckpt train linear knn
EsViT 28M 1024 WebVision-v1 75.4% 69.4% full ckpt train linear knn
EsViT 28M 1024 OpenImages-v4 69.6% 60.3% full ckpt train linear knn
EsViT 28M 1024 ImageNet-22K 73.5% 66.1% full ckpt train linear knn

Pre-training

One-node training

To train on 1 node with 16 GPUs for Swin-T model size:

PROJ_PATH=your_esvit_project_path
DATA_PATH=$PROJ_PATH/project/data/imagenet

OUT_PATH=$PROJ_PATH/output/esvit_exp/ssl/swin_tiny_imagenet/
python -m torch.distributed.launch --nproc_per_node=16 main_esvit.py --arch swin_tiny --data_path $DATA_PATH/train --output_dir $OUT_PATH --batch_size_per_gpu 32 --epochs 300 --teacher_temp 0.07 --warmup_epochs 10 --warmup_teacher_temp_epochs 30 --norm_last_layer false --use_dense_prediction True --cfg experiments/imagenet/swin/swin_tiny_patch4_window7_224.yaml 

The main training script is main_esvit.py and conducts the training loop, taking the following options (among others) as arguments:

  • --use_dense_prediction: whether or not to use the region matching task in pre-training
  • --arch: switch between different sparse self-attention in the multi-stage Transformer architecture. Example architecture choices for EsViT training include [swin_tiny, swin_small, swin_base, swin_large,cvt_tiny, vil_2262]. The configuration files should be adjusted accrodingly, we provide example below. One may specify the network configuration by editing the YAML file under experiments/imagenet/*/*.yaml. The default window size=7; To consider a multi-stage architecture with window size=14, please choose yaml files with window14 in filenames.

To train on 1 node with 16 GPUs for Convolutional vision Transformer (CvT) models:

python -m torch.distributed.launch --nproc_per_node=16 main_evsit.py --arch cvt_tiny --data_path $DATA_PATH/train --output_dir $OUT_PATH --batch_size_per_gpu 32 --epochs 300 --teacher_temp 0.07 --warmup_epochs 10 --warmup_teacher_temp_epochs 30 --norm_last_layer false --use_dense_prediction True --aug-opt dino_aug --cfg experiments/imagenet/cvt_v4/s1.yaml

To train on 1 node with 16 GPUs for Vision Longformer (ViL) models:

python -m torch.distributed.launch --nproc_per_node=16 main_evsit.py --arch vil_2262 --data_path $DATA_PATH/train --output_dir $OUT_PATH --batch_size_per_gpu 32 --epochs 300 --teacher_temp 0.07 --warmup_epochs 10 --warmup_teacher_temp_epochs 30 --norm_last_layer false --use_dense_prediction True --aug-opt dino_aug --cfg experiments/imagenet/vil/vil_small/base.yaml MODEL.SPEC.MSVIT.ARCH 'l1,h3,d96,n2,s1,g1,p4,f7,a0_l2,h6,d192,n2,s1,g1,p2,f7,a0_l3,h12,d384,n6,s0,g1,p2,f7,a0_l4,h24,d768,n2,s0,g0,p2,f7,a0' MODEL.SPEC.MSVIT.MODE 1 MODEL.SPEC.MSVIT.VIL_MODE_SWITCH 0.75

Multi-node training

To train on 2 nodes with 16 GPUs each (total 32 GPUs) for Swin-Small model size:

OUT_PATH=$PROJ_PATH/exp_output/esvit_exp/swin/swin_small/bl_lr0.0005_gpu16_bs16_multicrop_epoch300_dino_aug_window14
python main_evsit_mnodes.py --num_nodes 2 --num_gpus_per_node 16 --data_path $DATA_PATH/train --output_dir $OUT_PATH/continued_from0200_dense --batch_size_per_gpu 16 --arch swin_small --zip_mode True --epochs 300 --teacher_temp 0.07 --warmup_epochs 10 --warmup_teacher_temp_epochs 30 --norm_last_layer false --cfg experiments/imagenet/swin/swin_small_patch4_window14_224.yaml --use_dense_prediction True --pretrained_weights_ckpt $OUT_PATH/checkpoint0200.pth

Evaluation:

k-NN and Linear classification on ImageNet

To train a supervised linear classifier on frozen weights on a single node with 4 gpus, run eval_linear.py. To train a k-NN classifier on frozen weights on a single node with 4 gpus, run eval_knn.py. Please specify --arch, --cfg and --pretrained_weights to choose a pre-trained checkpoint. If you want to evaluate the last checkpoint of EsViT with Swin-T, you can run for example:

PROJ_PATH=your_esvit_project_path
DATA_PATH=$PROJ_PATH/project/data/imagenet

OUT_PATH=$PROJ_PATH/exp_output/esvit_exp/swin/swin_tiny/bl_lr0.0005_gpu16_bs32_dense_multicrop_epoch300
CKPT_PATH=$PROJ_PATH/exp_output/esvit_exp/swin/swin_tiny/bl_lr0.0005_gpu16_bs32_dense_multicrop_epoch300/checkpoint.pth

python -m torch.distributed.launch --nproc_per_node=4 eval_linear.py --data_path $DATA_PATH --output_dir $OUT_PATH/lincls/epoch0300 --pretrained_weights $CKPT_PATH --checkpoint_key teacher --batch_size_per_gpu 256 --arch swin_tiny --cfg experiments/imagenet/swin/swin_tiny_patch4_window7_224.yaml --n_last_blocks 4 --num_labels 1000 MODEL.NUM_CLASSES 0

python -m torch.distributed.launch --nproc_per_node=4 eval_knn.py --data_path $DATA_PATH --dump_features $OUT_PATH/features/epoch0300 --pretrained_weights $CKPT_PATH --checkpoint_key teacher --batch_size_per_gpu 256 --arch swin_tiny --cfg experiments/imagenet/swin/swin_tiny_patch4_window7_224.yaml MODEL.NUM_CLASSES 0

Analysis/Visualization of correspondence and attention maps

You can analyze the learned models by running python run_analysis.py. One example to analyze EsViT (Swin-T) is shown.

For an invidiual image (with path --image_path $IMG_PATH), we visualize the attention maps and correspondence of the last layer:

python run_analysis.py --arch swin_tiny --image_path $IMG_PATH --output_dir $OUT_PATH --pretrained_weights $CKPT_PATH --learning ssl --seed $SEED --cfg experiments/imagenet/swin/swin_tiny_patch4_window7_224.yaml --vis_attention True --vis_correspondence True MODEL.NUM_CLASSES 0 

For an image dataset (with path --data_path $DATA_PATH), we quantatively measure the correspondence:

python run_analysis.py --arch swin_tiny --data_path $DATA_PATH --output_dir $OUT_PATH --pretrained_weights $CKPT_PATH --learning ssl --seed $SEED --cfg experiments/imagenet/swin/swin_tiny_patch4_window7_224.yaml  --measure_correspondence True MODEL.NUM_CLASSES 0 

For more examples, please see scripts/scripts_local/run_analysis.sh.

Citation

If you find this repository useful, please consider giving a star and citation 🍺 :

@article{li2021esvit,
  title={Efficient Self-supervised Vision Transformers for Representation Learning},
  author={Li, Chunyuan and Yang, Jianwei and Zhang, Pengchuan and Gao, Mei and Xiao, Bin and Dai, Xiyang and Yuan, Lu and Gao, Jianfeng},
  journal={arXiv preprint arXiv:2106.09785},
  year={2021}
}

Related Projects/Codebase

[Swin Transformers] [Vision Longformer] [Convolutional vision Transformers (CvT)] [Focal Transformers]

Acknowledgement

Our implementation is built partly upon packages: [Dino] [Timm]

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022