Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

Overview

SmallPebble

Project status: experimental, unstable.



SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch in Python, using NumPy/CuPy.

The implementation is in smallpebble.py.

Features:

  • Relatively simple implementation.
  • Powerful API for creating models.
  • Various operations, such as matmul, conv2d, maxpool2d.
  • Broadcasting support.
  • Eager or lazy execution.
  • It's easy to add new SmallPebble functions.
  • GPU, if use CuPy.

Graphs are built implicitly via Python objects referencing Python objects. The only real step taken towards improving performance is to use NumPy/CuPy.

Should I use this?

You probably want a more efficient and featureful framework, such as JAX, PyTorch, TensorFlow, etc.

Read on to see:

  • Examples of deep learning models created and trained using SmallPebble.
  • A brief guide to using SmallPebble.

For an introduction to autodiff and an even more minimal autodiff implementation, look here.


import matplotlib.pyplot as plt
import numpy as np
import smallpebble as sp
from smallpebble.misc import load_data
from tqdm import tqdm

Training a neural network on MNIST

Load the dataset, and create a validation set.

X_train, y_train, _, _ = load_data('mnist')  # load / download from openml.org
X_train = X_train/255

# Separate out data for validation.
X = X_train[:50_000, ...]
y = y_train[:50_000]
X_eval = X_train[50_000:60_000, ...]
y_eval = y_train[50_000:60_000]

Build a model.

X_in = sp.Placeholder()
y_true = sp.Placeholder()

h = sp.linearlayer(28*28, 100)(X_in)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.linearlayer(100, 100)(h)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.linearlayer(100, 10)(h)
y_pred = sp.Lazy(sp.softmax)(h)
loss = sp.Lazy(sp.cross_entropy)(y_pred, y_true)

learnables = sp.get_learnables(y_pred)

loss_vals = []
validation_acc = []

Train model, and measure performance on validation dataset.

NUM_EPOCHS = 300
BATCH_SIZE = 200

eval_batch = sp.batch(X_eval, y_eval, BATCH_SIZE)

for i, (xbatch, ybatch) in tqdm(enumerate(sp.batch(X, y, BATCH_SIZE)), total=NUM_EPOCHS):
    if i > NUM_EPOCHS: break
    
    X_in.assign_value(sp.Variable(xbatch))
    y_true.assign_value(ybatch)
    
    loss_val = loss.run()  # run the graph
    if np.isnan(loss_val.array):
        print("loss is nan, aborting.")
        break
    loss_vals.append(loss_val.array)
        
    # Compute gradients, and carry out learning step.
    gradients = sp.get_gradients(loss_val)
    sp.sgd_step(learnables, gradients, 3e-4)
        
    # Compute validation accuracy:
    x_eval_batch, y_eval_batch = next(eval_batch)
    X_in.assign_value(sp.Variable(x_eval_batch))
    predictions = y_pred.run()
    predictions = np.argmax(predictions.array, axis=1)
    accuracy = (y_eval_batch == predictions).mean()
    validation_acc.append(accuracy)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)
plt.title('Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.plot(loss_vals)
plt.subplot(1, 2, 2)
plt.title('Validation accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.suptitle('Neural network trained on MNIST, using SmallPebble.')
plt.ylim([0, 1])
plt.plot(validation_acc)
plt.show()
301it [00:03, 94.26it/s]                         

png

Training a convolutional neural network on MNIST

Make a function that creates trainable convolutional layers:

def convlayer(height, width, depth, n_kernels, strides=[1,1]):
    # Initialise kernels:
    sigma = np.sqrt(6 / (height*width*depth+height*width*n_kernels))
    kernels_init = sigma*(np.random.random([height, width, depth, n_kernels]) - .5)
    # Wrap with sp.Variable, so we can compute gradients:
    kernels = sp.Variable(kernels_init)
    # Flag as learnable, so we can extract from the model to train:
    kernels = sp.learnable(kernels)
    # Curry, to set `strides`:
    func = lambda images, kernels: sp.conv2d(images, kernels, strides=strides, padding='SAME')
    # Curry, to use the kernels created here:
    return lambda images: sp.Lazy(func)(images, kernels)

Define a model.

X_in = sp.Placeholder()
y_true = sp.Placeholder()

h = convlayer(height=3, width=3, depth=1, n_kernels=16)(X_in)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.Lazy(lambda a: sp.maxpool2d(a, 2, 2, strides=[2, 2]))(h)

h = sp.Lazy(lambda x: sp.reshape(x, [-1, 14*14*16]))(h)
h = sp.linearlayer(14*14*16, 64)(h)
h = sp.Lazy(sp.leaky_relu)(h)

h = sp.linearlayer(64, 10)(h)
y_pred = sp.Lazy(sp.softmax)(h)
loss = sp.Lazy(sp.cross_entropy)(y_pred, y_true)

learnables = sp.get_learnables(y_pred)

loss_vals = []
validation_acc = []

# Check we get the dimensions we expected.
X_in.assign_value(sp.Variable(X_train[0:3,:].reshape([-1,28,28,1])))
y_true.assign_value(y_train[0])
h.run().array.shape
(3, 10)
NUM_EPOCHS = 300
BATCH_SIZE = 200

eval_batch = sp.batch(X_eval.reshape([-1,28,28,1]), y_eval, BATCH_SIZE)

for i, (xbatch, ybatch) in tqdm(
    enumerate(sp.batch(X.reshape([-1,28,28,1]), y, BATCH_SIZE)), total=NUM_EPOCHS):
    if i > NUM_EPOCHS: break
    
    X_in.assign_value(sp.Variable(xbatch))
    y_true.assign_value(ybatch)
    
    loss_val = loss.run()
    if np.isnan(loss_val.array):
        print("Aborting, loss is nan.")
        break
    loss_vals.append(loss_val.array)
        
    # Compute gradients, and carry out learning step.
    gradients = sp.get_gradients(loss_val)
    sp.sgd_step(learnables, gradients, 3e-4)
        
    # Compute validation accuracy:
    x_eval_batch, y_eval_batch = next(eval_batch)
    X_in.assign_value(sp.Variable(x_eval_batch))
    predictions = y_pred.run()
    predictions = np.argmax(predictions.array, axis=1)
    accuracy = (y_eval_batch == predictions).mean()
    validation_acc.append(accuracy)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)
plt.title('Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.plot(loss_vals)
plt.subplot(1, 2, 2)
plt.title('Validation accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.suptitle('CNN trained on MNIST, using SmallPebble.')
plt.ylim([0, 1])
plt.plot(validation_acc)
plt.show()
301it [03:35,  1.40it/s]                         

png

Training a CNN on CIFAR

Load the dataset.

X_train, y_train, _, _ = load_data('cifar')
X_train = X_train/255

# Separate out some data for validation.
X = X_train[:45_000, ...]
y = y_train[:45_000]
X_eval = X_train[45_000:50_000, ...]
y_eval = y_train[45_000:50_000]

Plot, to check it's the right data.

# This code is from: https://www.tensorflow.org/tutorials/images/cnn

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(8,8))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(X_train[i,:].reshape(32,32,3), cmap=plt.cm.binary)
    plt.xlabel(class_names[y_train[i]])

plt.show()

png

Define the model. Due to my lack of ram, it is kept relatively small.

X_in = sp.Placeholder()
y_true = sp.Placeholder()

h = convlayer(height=3, width=3, depth=3, n_kernels=16)(X_in)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.Lazy(lambda a: sp.maxpool2d(a, 2, 2, strides=[2, 2]))(h)

h = convlayer(height=3, width=3, depth=16, n_kernels=32)(h)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.Lazy(lambda a: sp.maxpool2d(a, 2, 2, strides=[2, 2]))(h)

h = sp.Lazy(lambda x: sp.reshape(x, [-1, 8*8*32]))(h)
h = sp.linearlayer(8*8*32, 64)(h)
h = sp.Lazy(sp.leaky_relu)(h)

h = sp.linearlayer(64, 10)(h)
h = sp.Lazy(sp.softmax)(h)

y_pred = h
loss = sp.Lazy(sp.cross_entropy)(y_pred, y_true)

learnables = sp.get_learnables(y_pred)

loss_vals = []
validation_acc = []

# Check we get the expected dimensions
X_in.assign_value(sp.Variable(X[0:3, :].reshape([-1, 32, 32, 3])))
h.run().shape
(3, 10)

Train the model.

NUM_EPOCHS = 3000
BATCH_SIZE = 32

eval_batch = sp.batch(X_eval, y_eval, BATCH_SIZE)

for i, (xbatch, ybatch) in tqdm(enumerate(sp.batch(X, y, BATCH_SIZE)), total=NUM_EPOCHS):
    if i > NUM_EPOCHS: break
       
    xbatch_images = xbatch.reshape([-1, 32, 32, 3])
    X_in.assign_value(sp.Variable(xbatch_images))
    y_true.assign_value(ybatch)
    
    loss_val = loss.run()
    if np.isnan(loss_val.array):
        print("Aborting, loss is nan.")
        break
    loss_vals.append(loss_val.array)
    
    # Compute gradients, and carry out learning step.
    gradients = sp.get_gradients(loss_val)  
    sp.sgd_step(learnables, gradients, 3e-3)
          
    # Compute validation accuracy:
    x_eval_batch, y_eval_batch = next(eval_batch)
    X_in.assign_value(sp.Variable(x_eval_batch.reshape([-1, 32, 32, 3])))
    predictions = y_pred.run()
    predictions = np.argmax(predictions.array, axis=1)
    accuracy = (y_eval_batch == predictions).mean()
    validation_acc.append(accuracy)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)
plt.title('Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.plot(loss_vals)
plt.subplot(1, 2, 2)
plt.title('Validation accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.plot(validation_acc)
plt.show()
3001it [25:16,  1.98it/s]                            

png

...And we see some improvement, despite the model's small size, the unsophisticated optimisation method and the difficulty of the task.


Brief guide to using SmallPebble

SmallPebble provides the following building blocks to make models with:

  • sp.Variable
  • SmallPebble operations, such as sp.add, sp.mul, etc.
  • sp.get_gradients
  • sp.Lazy
  • sp.Placeholder (this is really just sp.Lazy on the identity function)
  • sp.learnable
  • sp.get_learnables

The following examples show how these are used.

sp.Variable & sp.get_gradients

With SmallPebble, you can:

  • Wrap NumPy arrays in sp.Variable
  • Apply SmallPebble operations (e.g. sp.matmul, sp.add, etc.)
  • Compute gradients with sp.get_gradients
a = sp.Variable(np.random.random([2, 2]))
b = sp.Variable(np.random.random([2, 2]))
c = sp.Variable(np.random.random([2]))
y = sp.mul(a, b) + c
print('y.array:\n', y.array)

gradients = sp.get_gradients(y)
grad_a = gradients[a]
grad_b = gradients[b]
grad_c = gradients[c]
print('grad_a:\n', grad_a)
print('grad_b:\n', grad_b)
print('grad_c:\n', grad_c)
y.array:
 [[0.50222439 0.67745659]
 [0.68666171 0.58330707]]
grad_a:
 [[0.56436821 0.2581522 ]
 [0.89043144 0.25750461]]
grad_b:
 [[0.11665152 0.85303194]
 [0.28106794 0.48955456]]
grad_c:
 [2. 2.]

Note that y is computed straight away, i.e. the (forward) computation happens immediately.

Also note that y is a sp.Variable and we could continue to carry out SmallPebble operations on it.

sp.Lazy & sp.Placeholder

Lazy graphs are constructed using sp.Lazy and sp.Placeholder.

lazy_node = sp.Lazy(lambda a, b: a + b)(1, 2)
print(lazy_node)
print(lazy_node.run())
<smallpebble.smallpebble.Lazy object at 0x7fbc92d58d50>
3
a = sp.Lazy(lambda a: a)(2)
y = sp.Lazy(lambda a, b, c: a * b + c)(a, 3, 4)
print(y)
print(y.run())
<smallpebble.smallpebble.Lazy object at 0x7fbc92d41d50>
10

Forward computation does not happen immediately - only when .run() is called.

a = sp.Placeholder()
b = sp.Variable(np.random.random([2, 2]))
y = sp.Lazy(sp.matmul)(a, b)

a.assign_value(sp.Variable(np.array([[1,2], [3,4]])))

result = y.run()
print('result.array:\n', result.array)
result.array:
 [[1.01817665 2.54693119]
 [2.42244218 5.69810698]]

You can use .run() as many times as you like.

Let's change the placeholder value and re-run the graph:

a.assign_value(sp.Variable(np.array([[10,20], [30,40]])))
result = y.run()
print('result.array:\n', result.array)
result.array:
 [[10.18176654 25.46931189]
 [24.22442177 56.98106985]]

Finally, let's compute gradients:

gradients = sp.get_gradients(result)

Note that sp.get_gradients is called on result, which is a sp.Variable, not on y, which is a sp.Lazy instance.

sp.learnable & sp.get_learnables

Use sp.learnable to flag parameters as learnable, allowing them to be extracted from a lazy graph with sp.get_learnables.

This enables the workflow of building a model, while flagging parameters as learnable, and then extracting all the parameters in one go at the end.

a = sp.Placeholder()
b = sp.learnable(sp.Variable(np.random.random([2, 1])))
y = sp.Lazy(sp.matmul)(a, b)
y = sp.Lazy(sp.add)(y, sp.learnable(sp.Variable(np.array([5]))))

learnables = sp.get_learnables(y)

for learnable in learnables:
    print(learnable)
<smallpebble.smallpebble.Variable object at 0x7fbc60b6ebd0>
<smallpebble.smallpebble.Variable object at 0x7fbc60b6ec50>

Switching between NumPy and CuPy

We can dynamically switch between NumPy and CuPy:

import cupy
import numpy
import smallpebble as sp

# Switch to CuPy.
sp.array_library = cupy

# And back to NumPy again:
sp.array_library = numpy
Owner
Sidney Radcliffe
Sidney Radcliffe
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
Prototype python implementation of the ome-ngff table spec

Prototype python implementation of the ome-ngff table spec

Kevin Yamauchi 8 Nov 20, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022