Code for ACL'2021 paper WARP ๐ŸŒ€ Word-level Adversarial ReProgramming

Overview

๐ŸŒ€ WARP: Word-level Adversarial ReProgramming

This repository contains code for ACL'2021 Paper WARP: Word-level Adversarial ReProgramming.

WARP adds a few trainable embeddings around the input, which causes the masked language model to predict the sentiment of the sentence in the SST-2 task.

Transfer learning from pretrained language models recently became the dominant approach for solving many NLP tasks. A common approach to transfer learning for multiple tasks that maximize parameter sharing trains one or more task-specific layers on top of the language model.

In this paper, we present an alternative approach based on adversarial reprogramming, which extends earlier work on automatic prompt generation. Adversarial reprogramming attempts to learn task-specific word embeddings that, when concatenated to the input text, instruct the language model to solve the specified task.

Using up to 25K trainable parameters per task, this approach outperforms all existing methods that use up to 25M trainable parameters on the public leaderboard of the GLUE benchmark. Our method, initialized with task-specific human-readable prompts, also works in a few-shot setting, outperforming GPT-3 on two SuperGLUE tasks after training on just 32 samples.

Few-Shot Results

Set Model CB RTE
F1 Acc. Acc.
dev
GPT-3 Small 26.1 42.9 52.3
GPT-3 Med 40.4 58.9 48.4
GPT-3 57.2 82.1 72.9
PET (ALBERT) 59.4 85.1 69.8
iPET (ALBERT) 92.4 92.9 74.0
WARPinit (ALBERT) 84.0 87.5 71.8
test
GPT-3 52.0 75.6 69.0
PET (ALBERT) 60.2 87.2 67.2
iPET (ALBERT) 79.9 88.8 70.8
WARPinit (ALBERT) 70.2 82.4 69.1
Results on SuperGLUE benchmark. The results for the test set are obtained from SuperGLUE evaluation server. We only show systems performing in a similar few-shot training setup using 32 examples.

Setup

The code requires YerevaNN's internal version of allennlp

git clone https://github.com/YerevaNN/allennlp
git checkout warp
pip install .

Training

Linear Probing

for DATASET in 'cola' 'sst2' 'mrpc' 'qqp' 'stsb' 'mnli' 'rte' 'wnli' 'qnli'
do
    export HPARAMS='{
        "dataset": "'$DATASET'",
        "lr": 0.0001,
        "num_epochs": 20,
        "prompts": [],
        "reorder_optimized": false,
        "max_batch_size": 8,
        "max_tokens_sq": 262144, "on_logits":  false, "pooling_index":  null, "seed":  1}'
    python -m allennlp train \
    -s .aim/baseline-linear-${DATASET} configs/warp.jsonnet
done

WARP_0

"], "reorder_optimized": true, "max_batch_size": 8, "max_tokens_sq": 262144, "on_logits": "pre_decoder_layer_norm", "pooling_index": 1, "seed": 1 }' python -m allennlp train \ -s .aim/baseline-warp_0-${DATASET} configs/warp.jsonnet done ">
for DATASET in 'cola' 'sst2' 'mrpc' 'qqp' 'stsb' 'mnli' 'rte' 'wnli' 'qnli'
do
    export HPARAMS='{
        "dataset": "'$DATASET'",
        "lr": 0.0001,
        "num_epochs": 20,
        "prompts": [null, "
   
    "],
   
        "reorder_optimized": true,
        "max_batch_size": 8,
        "max_tokens_sq": 262144,
        "on_logits": "pre_decoder_layer_norm",
        "pooling_index": 1,
        "seed": 1
    }'
    python -m allennlp train \
    -s .aim/baseline-warp_0-${DATASET} configs/warp.jsonnet
done

Training WARP

", "prompts":[-10,-11,-12,-13,-14,null,-15,-16,-17,-18,-19," ",-20,-21,-22,-23,-24,null,-25,-26,-27,-28,-29], "seed":1, "transformer_model":"roberta-large" }' python -m allennlp train \ -s .aim/t-${DATASET} configs/warp.jsonnet ">
export DATASET="rte"
export HPARAMS='{
    "benchmark":"super_glue",
    "classifier_init":null,
    "dataset":"'$DATASET'",
    "ensure_whitespace_between":false,
    "lr":0.001,
    "max_batch_size":8,
    "max_tokens_sq":262144,
    "num_epochs":30,
    "prompt_better_init":"
    
     ",
    
    "prompts":[-10,-11,-12,-13,-14,null,-15,-16,-17,-18,-19,"
    
     ",-20,-21,-22,-23,-24,null,-25,-26,-27,-28,-29],
    
    "seed":1,
    "transformer_model":"roberta-large"
}'
python -m allennlp train \
-s .aim/t-${DATASET} configs/warp.jsonnet

WARP_init

Few-Shot Experiments

", [-20, ","], null, [-29, "!"],-30,-31], "seed":3, "str_cut_frac":0, "transformer_model":"albert-xxlarge-v2", "validation_metric": null }' python -m allennlp train \ -s .aim/t-${DATASET}-`date +%s` configs/warp.jsonnet ">
export HPARAMS='{
    "benchmark":"super_glue",
    "classifier_init": {
        "entailment": " yes",
        "not_entailment": " instead"
    },
    "dataset":"few_rte",
    "eval_mode":false,
    "lr":0.001,
    "max_batch_size":2,
    "max_tokens_sq":131072,
    "num_epochs":100,
    "num_gradient_accumulation_steps":2,
    "prompt_better_init": "[PAD]",
    "prompts":[-10,-11,[-14,"\""],null,[-15,"\""],  [-16, "?"], "
   
    ", [-20, ","], null, [-29, "!"],-30,-31],
   
    "seed":3,
    "str_cut_frac":0,
    "transformer_model":"albert-xxlarge-v2",
    "validation_metric": null
}'
python -m allennlp train \
-s .aim/t-${DATASET}-`date +%s` configs/warp.jsonnet
",[-20,","],null,[-29,"!"],-30,-31], "seed":1, "str_cut_frac":0.06, "transformer_model":"albert-xxlarge-v2", "validation_metric":"+training_val_metric" }' python -m allennlp train \ -s .aim/t-${DATASET}-`date +%s` configs/warp.jsonnet ">
export HPARAMS='{
   "benchmark":"super_glue",
   "classifier_init":{
      "entailment":" yes",
      "not_entailment":" instead"
   },
   "dataset":"few_rte",
   "grad_norm":1,
   "lr":0.001,
   "max_batch_size":2,
   "max_tokens_sq":131072,
   "num_epochs":30,
   "num_gradient_accumulation_steps":2,
   "prompt_better_init":"[PAD]",
   "prompts":[-10,-11,[-14,"\""],null,[-15,"\""],[-16,"?"],"
   
    ",[-20,","],null,[-29,"!"],-30,-31],
   
   "seed":1,
   "str_cut_frac":0.06,
   "transformer_model":"albert-xxlarge-v2",
   "validation_metric":"+training_val_metric"
}'
python -m allennlp train \
-s .aim/t-${DATASET}-`date +%s` configs/warp.jsonnet

Evaluation

python -m allennlp predict \
  --silent --use-dataset-reader --cuda-device 0 \
  --batch-size 50 \
  --predictor glue --output-file v0.1/AX.tsv /data/arp/.aim/H-93ae5ae9 ax/test
python -m allennlp predict \
  --silent --use-dataset-reader --cuda-device 0 \
  --batch-size 50 \
  --predictor glue --output-file v0.1/MNLI-m.tsv /data/arp/.aim/H-93ae5ae9 test_matched

Citation

If you want to refer to our work use this bibTeX:

@inproceedings{hambardzumyan-etal-2021-warp,
    title = "{WARP}: {W}ord-level {A}dversarial {R}e{P}rogramming",
    author = "Hambardzumyan, Karen  and
      Khachatrian, Hrant  and
      May, Jonathan",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.381",
    doi = "10.18653/v1/2021.acl-long.381",
    pages = "4921--4933"
}
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
Este conversor criarรก a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criarรก a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
The official PyTorch implementation of paper BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition Boyan Zhou, Quan Cui, Xiu-Shen Wei*, Zhao-Min Chen This repo

Megvii-Nanjing 616 Dec 21, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022