Dynamical Wasserstein Barycenters for Time Series Modeling

Overview

Dynamical Wasserstein Barycenters for Time Series Modeling

This is the code related for the Dynamical Wasserstein Barycenter model published in Neurips 2021.

To run the code and replicate the results reported in our paper,

# usage: DynamicalWassersteinBarycenters.py dataSet dataFile debugFolder interpModel [--ParamTest PARAMTEST] [--lambda LAM] [--s S]

# Sample run on MSR data                                         
>> python DynamicalWassersteinBarycenters.py MSR_Batch ../Data/MSR_Data/subj090_1.mat ../debug/MSR/subj001_1.mat Wass 

# Sample run for parameter test
>> python DynamicalWassersteinBarycenters.py MSR_Batch ../Data/MSR_Data/subj090_1.mat ../debug/ParamTest/subj001_1.mat Wass --ParamTest 1 --lambda 100 --s 1.0

The interpMethod is either Wass` for the Wasserstein barycentric model or GMM`` for the linear interpolation model.

Simulated Data

The simulated data and experiment included in this supplement can be replicated using using the following commands.

# Generate 2 and 3 state simulated data                                         
>> python GenerateOptimizationExperimentData.py
>> python GenerateOptimizationExperimentData_3K.py

# usage: OptimizationExperiment.py FileIn Mode File
# Sample run for optimization experiment
>> python OptimizationExperiment.py ../data/SimulatedOptimizationData_2K/dim_5_5.mat/ WB ../debug/SimulatedData/dim_5_5_out.mat 

The Mode is either WB for Wasserstein-Bures geometry and Euc for Euclidean geometry using Cholesky decomposition parameterization.

Requirements

_libgcc_mutex=0.1=conda_forge
_openmp_mutex=4.5=1_llvm
_pytorch_select=0.2=gpu_0
blas=2.17=openblas
ca-certificates=2020.12.5=ha878542_0
certifi=2020.12.5=py38h578d9bd_1
cffi=1.14.4=py38h261ae71_0
cudatoolkit=8.0=3
cudnn=7.1.3=cuda8.0_0
cycler=0.10.0=py_2
freetype=2.10.4=h7ca028e_0
future=0.18.2=py38h578d9bd_3
immutables=0.15=py38h497a2fe_0
intel-openmp=2020.2=254
joblib=1.0.0=pyhd8ed1ab_0
jpeg=9d=h36c2ea0_0
kiwisolver=1.3.1=py38h82cb98a_0
lcms2=2.11=hcbb858e_1
ld_impl_linux-64=2.33.1=h53a641e_7
libblas=3.8.0=17_openblas
libcblas=3.8.0=17_openblas
libedit=3.1.20191231=h14c3975_1
libffi=3.3=he6710b0_2
libgcc-ng=9.3.0=h5dbcf3e_17
libgfortran-ng=7.3.0=hdf63c60_0
libgomp=9.3.0=h5dbcf3e_17
liblapack=3.8.0=17_openblas
liblapacke=3.8.0=17_openblas
libopenblas=0.3.10=pthreads_hb3c22a3_4
libpng=1.6.37=h21135ba_2
libstdcxx-ng=9.3.0=h6de172a_18
libtiff=4.1.0=h4f3a223_6
libwebp-base=1.1.0=h36c2ea0_3
llvm-openmp=11.0.0=hfc4b9b4_1
lz4-c=1.9.2=he1b5a44_3
matplotlib-base=3.3.3=py38h5c7f4ab_0
mkl=2020.4=h726a3e6_304
mkl-service=2.3.0=py38he904b0f_0
mkl_fft=1.3.0=py38h5c078b8_1
mkl_random=1.2.0=py38hc5bc63f_1
ncurses=6.2=he6710b0_1
ninja=1.10.2=py38hff7bd54_0
numpy=1.19.5=py38h18fd61f_1
numpy-base=1.18.5=py38h2f8d375_0
olefile=0.46=pyh9f0ad1d_1
openssl=1.1.1k=h7f98852_0
pillow=8.1.0=py38h357d4e7_1
pip=20.3.3=py38h06a4308_0
pot=0.7.0=py38h950e882_0
pycparser=2.20=py_2
pyparsing=2.4.7=pyh9f0ad1d_0
python=3.8.5=h7579374_1
python-dateutil=2.8.1=py_0
python_abi=3.8=1_cp38
pytorch=1.7.1=cpu_py38h36eccb8_1
readline=8.0=h7b6447c_0
scikit-learn=0.24.1=py38h658cfdd_0
scipy=1.5.2=py38h8c5af15_0
setuptools=51.1.2=py38h06a4308_4
six=1.15.0=py38h06a4308_0
sqlite=3.33.0=h62c20be_0
threadpoolctl=2.1.0=pyh5ca1d4c_0
tk=8.6.10=hbc83047_0
tornado=6.1=py38h497a2fe_1
wheel=0.36.2=pyhd3eb1b0_0
xz=5.2.5=h7b6447c_0
zlib=1.2.11=h7b6447c_3
zstd=1.4.5=h6597ccf_2
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.

dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en

DeepMind 3k Dec 31, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022