Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Overview

Shield: CC BY-NC-SA 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Deep Learning to Improve Breast Cancer Detection on Screening Mammography (End-to-end Training for Whole Image Breast Cancer Screening using An All Convolutional Design)

Li Shen, Ph.D. CS

Icahn School of Medicine at Mount Sinai

New York, New York, USA

Fig1

Introduction

This is the companion site for our paper that was originally titled "End-to-end Training for Whole Image Breast Cancer Diagnosis using An All Convolutional Design" and was retitled as "Deep Learning to Improve Breast Cancer Detection on Screening Mammography". The paper has been published here. You may also find the arXiv version here. This work was initially presented at the NIPS17 workshop on machine learning for health. Access the 4-page short paper here. Download the poster.

For our entry in the DREAM2016 Digital Mammography challenge, see this write-up. This work is much improved from our method used in the challenge.

Whole image model downloads

A few best whole image models are available for downloading at this Google Drive folder. YaroslavNet is the DM challenge top-performing team's method. Here is a table for individual downloads:

Database Patch Classifier Top Layers (two blocks) Single AUC Augmented AUC Link
DDSM Resnet50 [512-512-1024]x2 0.86 0.88 download
DDSM VGG16 512x1 0.83 0.86 download
DDSM VGG16 [512-512-1024]x2 0.85 0.88 download
DDSM YaroslavNet heatmap + max pooling + FC16-8 + shortcut 0.83 0.86 download
INbreast VGG16 512x1 0.92 0.94 download
INbreast VGG16 [512-512-1024]x2 0.95 0.96 download
  • Inference level augmentation is obtained by horizontal and vertical flips to generate 4 predictions.
  • The listed scores are single model AUC and prediction averaged AUC.
  • 3 Model averaging on DDSM gives AUC of 0.91
  • 2 Model averaging on INbreast gives AUC of 0.96.

Patch classifier model downloads

Several patch classifier models (i.e. patch state) are also available for downloading at this Google Drive folder. Here is a table for individual download:

Model Train Set Accuracy Link
Resnet50 S10 0.89 download
VGG16 S10 0.84 download
VGG19 S10 0.79 download
YaroslavNet (Final) S10 0.89 download
Resnet50 S30 0.91 download
VGG16 S30 0.86 download
VGG19 S30 0.89 download

With patch classifier models, you can convert them into any whole image classifier by adding convolutional, FC and heatmap layers on top and see for yourself.

A bit explanation of this repository's file structure

  • The .py files under the root directory are Python modules to be imported.
  • You shall set the PYTHONPATH variable like this: export PYTHONPATH=$PYTHONPATH:your_path_to_repos/end2end-all-conv so that the Python modules can be imported.
  • The code for patch sampling, patch classifier and whole image training are under the ddsm_train folder.
  • sample_patches_combined.py is used to sample patches from images and masks.
  • patch_clf_train.py is used to train a patch classifier.
  • image_clf_train.py is used to train a whole image classifier, either on top of a patch classifier or from another already trained whole image classifier (i.e. finetuning).
  • There are multiple shell scripts under the ddsm_train folder to serve as examples.

Some input files' format

I've got a lot of requests asking about the format of some input files. Here I provide the first few lines and hope they can be helpful:

roi_mask_path.csv

patient_id,side,view,abn_num,pathology,type
P_00005,RIGHT,CC,1,MALIGNANT,calc
P_00005,RIGHT,MLO,1,MALIGNANT,calc
P_00007,LEFT,CC,1,BENIGN,calc
P_00007,LEFT,MLO,1,BENIGN,calc
P_00008,LEFT,CC,1,BENIGN_WITHOUT_CALLBACK,calc

pat_train.txt

P_00601
P_00413
P_01163
P_00101
P_01122

Transfer learning is as easy as 1-2-3

In order to transfer a model to your own data, follow these easy steps.

Determine the rescale factor

The rescale factor is used to rescale the pixel intensities so that the max value is 255. For PNG format, the max value is 65535, so the rescale factor is 255/65535 = 0.003891. If your images are already in the 255 scale, set rescale factor to 1.

Calculate the pixel-wise mean

This is simply the mean pixel intensity of your train set images.

Image size

This is currently fixed at 1152x896 for the models in this study. However, you can change the image size when converting from a patch classifier to a whole image classifier.

Finetune

Now you can finetune a model on your own data for cancer predictions! You may check out this shell script. Alternatively, copy & paste from here:

TRAIN_DIR="INbreast/train"
VAL_DIR="INbreast/val"
TEST_DIR="INbreast/test"
RESUME_FROM="ddsm_vgg16_s10_[512-512-1024]x2_hybrid.h5"
BEST_MODEL="INbreast/transferred_inbreast_best_model.h5"
FINAL_MODEL="NOSAVE"
export NUM_CPU_CORES=4

python image_clf_train.py \
    --no-patch-model-state \
    --resume-from $RESUME_FROM \
    --img-size 1152 896 \
    --no-img-scale \
    --rescale-factor 0.003891 \
    --featurewise-center \
    --featurewise-mean 44.33 \
    --no-equalize-hist \
    --batch-size 4 \
    --train-bs-multiplier 0.5 \
    --augmentation \
    --class-list neg pos \
    --nb-epoch 0 \
    --all-layer-epochs 50 \
    --load-val-ram \
    --load-train-ram \
    --optimizer adam \
    --weight-decay 0.001 \
    --hidden-dropout 0.0 \
    --weight-decay2 0.01 \
    --hidden-dropout2 0.0 \
    --init-learningrate 0.0001 \
    --all-layer-multiplier 0.01 \
    --es-patience 10 \
    --auto-batch-balance \
    --best-model $BEST_MODEL \
    --final-model $FINAL_MODEL \
    $TRAIN_DIR $VAL_DIR $TEST_DIR

Some explanations of the arguments:

  • The batch size for training is the product of --batch-size and --train-bs-multiplier. Because training uses roughtly twice (both forward and back props) the GPU memory of testing, --train-bs-multiplier is set to 0.5 here.
  • For model finetuning, only the second stage of the two-stage training is used here. So --nb-epoch is set to 0.
  • --load-val-ram and --load-train-ram will load the image data from the validation and train sets into memory. You may want to turn off these options if you don't have sufficient memory. When turned off, out-of-core training will be used.
  • --weight-decay and --hidden-dropout are for stage 1. --weight-decay2 and --hidden-dropout2 are for stage 2.
  • The learning rate for stage 1 is --init-learningrate. The learning rate for stage 2 is the product of --init-learningrate and --all-layer-multiplier.

Computational environment

The research in this study is carried out on a Linux workstation with 8 CPU cores and a single NVIDIA Quadro M4000 GPU with 8GB memory. The deep learning framework is Keras 2 with Tensorflow as the backend.

About Keras version

It is known that Keras >= 2.1.0 can give errors due an API change. See issue #7. Use Keras with version < 2.1.0. For example, Keras=2.0.8 is known to work.

TERMS OF USE

All data is free to use for non-commercial purposes. For commercial use please contact MSIP.

Owner
Li Shen
I'm an academic researcher with many years of experience developing machine learning algorithms and bioinformatic software and analyzing genomic data.
Li Shen
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022