Trajectory Extraction of road users via Traffic Camera

Overview

Traffic Monitoring

Citation

The associated paper for this project will be published here as soon as possible. When using this software, please cite the following:

@software{Strosahl_TrafficMonitoring,
author = {Strosahl, Julian},
license = {Apache-2.0},
title = {{TrafficMonitoring}},
url = {https://github.com/EFS-OpenSource/TrafficMonitoring},
version = {0.9.0}
}

Trajectory Extraction from Traffic Camera

This project was developed by Julian Strosahl Elektronische Fahrwerksyteme GmbH within the scope of the research project SAVeNoW (Project Website SAVe:)

This repository includes the Code for my Master Thesis Project about Trajectory Extraction from a Traffic Camera at an existing traffic intersection in Ingolstadt

The project is separated in different parts, at first a toolkit for capturing the live RTSP videostream from the camera. see here

The main project part is in this folder which contains a python script for training, evaluating and running a neuronal network, a tracking algorithm and extraction the trajectories to a csv file.

The training results (logs and metrics) are provided here

Example videos are provided here. You need to use Git LFS for access the videos.

Installation

  1. Install Miniconda
  2. Create Conda environment from existing file
conda env create --file environment.yml --name 
   

   

This will create a conda environment with your env name which contains all necessary python dependencies and OpenCV.

detectron2 is also necessary. You have to install it with for CUDA 11.0 For other CUDA version have a look in the installation instruction of detectron2.

python -m pip install detectron2 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu110/torch1.7/index.html
  1. Provide the Network Weights for the Mask R-CNN:
  • Use Git LFS to get the model_weights in the right folder and download them.
  • If you don't want to use GIT LFS, you can download the weights and store them in the model_weights folder. You can find two different versions of weights, one default model 4 cats is trained on segmentation 4 different categories (Truck, Car, Bicycle and Person) and the other model 16 cats is trained on 16 categories but with bad results in some categories.

Getting Started Video

If you don't have a video just capture one here Quick Start Capture Video from Stream

For extracting trajectories cd traffic_monitoring and run it on a specific video. If you don't have one, just use this provided demo video:

python run_on_video.py --video ./videos/2021-01-13_16-32-09.mp4

The annotated video with segmentations will be stored in videos_output and the trajectory file in trajectory_output. The both result folders will be created by the script.

The trajectory file provides following structure:

frame_id category track_id x y x_opt y_opt
11 car 1 678142.80 5405298.02 678142.28 5405298.20
11 car 3 678174.98 5405294.48 678176.03 5405295.02
... ... ... ... ... ... ...
19 car 15 678142.75 5405308.82 678142.33 5405308.84

x and y use detection and the middle point of the bounding box(Baseline, naive Approach), x_opt and y_opt are calculated by segmentation and estimation of a ground plate of each vehicle (Our Approach).

Georeferencing

The provided software is optimized for one specific research intersection. You can provide a intersection specific dataset for usage in this software by changing the points file in config.

Quality of Trajectories

14 Reference Measurements with a measurement vehicle with dGPS-Sensor over the intersection show a deviation of only 0.52 meters (Mean Absolute Error, MAE) and 0.69 meters (root-mean-square error, RMSE)

The following images show the georeferenced map of the intersection with the measurement ground truth (green), middle point of bounding box (blue) and estimation via bottom plate (concept of our work) (red)

right_intersection right_intersection left_intersection

The evaluation can be done by the script evaluation_measurement.py. The trajectory files for the measurement drives are prepared in the [data/measurement] folder. Just run

python evaluation_measurement.py 

for getting the error plots and the georeferenced images.

Own Training

The segmentation works with detectron2 and with an own training. If you want to use your own dataset to improve segmentation or detection you can retrain it with

python train.py

The dataset, which was created as part of this work, is not yet publicly available. You just need to provide training, validation and test data in data. The dataset needs the COCO-format. For labeling you can use CVAT which provides pre-labeling and interpolation

The data will be read by ReadCOCODataset. In line 323 is a mapping configuration which can be configured for remap the labeled categories in own specified categories.

If you want to have a look on my training experience explore Training Results

Quality of Tracking

If you want only evaluate the Tracking algorithm SORT vs. Deep SORT there is the script evaluation_tracking.py for evaluate only the tracking algorithm by py-motmetrics. You need the labeled dataset for this.

Acknowledgment

This work is supported by the German Federal Ministry of Transport and Digital Infrastructure (BMVI) within the Automated and Connected Driving funding program under Grant No. 01MM20012F (SAVeNoW).

License

TrafficMonitoring is distributed under the Apache License 2.0. See LICENSE for more information.

Owner
Julian Strosahl
Julian Strosahl
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022