This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Overview

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021)

Introduction

This repository is the offical Pytorch implementation of ContextPose, Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021). Below is the example pipeline of using ContextPose for 3D pose estimation. overall pipeline

Quick start

Environment

This project is developed using >= python 3.5 on Ubuntu 16.04. NVIDIA GPUs are needed.

Installation

  1. Clone this repo, and we'll call the directory that you cloned as ${ContextPose_ROOT}.
  2. Install dependences.
    1. Install pytorch >= v1.4.0 following official instruction.
    2. Install other packages. This project doesn't have any special or difficult-to-install dependencies. All installation can be down with:
    pip install -r requirements.txt
  3. Download data following the next section. In summary, your directory tree should be like this
${ContextPose_ROOT}
├── data
├── experiments
├── mvn
├── logs 
├── README.md
├── process_h36m.sh
├── requirements.txt
├── train.py
`── train.sh

Data

Note: We provide the training and evaluation code on Human3.6M dataset. We do NOT provide the source data. We do NOT own the data or have permission to redistribute the data. Please download according to the official instructions.

Human3.6M

  1. Install CDF C Library by following (https://stackoverflow.com/questions/37232008/how-read-common-data-format-cdf-in-python/58167429#58167429), which is neccessary for processing Human3.6M data.
  2. Download and preprocess the dataset by following the instructions in mvn/datasets/human36m_preprocessing/README.md.
  3. To train ContextPose model, you need rough estimations of the pelvis' 3D positions both for train and val splits. In the paper we use the precalculated 3D skeletons estimated by the Algebraic model proposed in learnable-triangulation (which is an opensource repo and we adopt their Volumetric model to be our baseline.) All pretrained weights and precalculated 3D skeletons can be downloaded at once from here and placed to ./data/pretrained. Here, we fine-tuned the pretrained weight on the Human3.6M dataset for another 20 epochs, please download the weight from here and place to ./data/pretrained/human36m.
  4. We provide the limb length mean and standard on the Human3.6M training set, please download from here and place to ./data/human36m/extra.
  5. Finally, your data directory should be like this (for more detailed directory tree, please refer to README.md)
${ContextPose_ROOT}
|-- data
    |-- human36m
    |   |-- extra
    |   |   | -- una-dinosauria-data
    |   |   | -- ...
    |   |   | -- mean_and_std_limb_length.h5
    |   `-- ...
    `-- pretrained
        |-- human36m
            |-- human36m_alg_10-04-2019
            |-- human36m_vol_softmax_10-08-2019
            `-- backbone_weights.pth

Train

Every experiment is defined by .config files. Configs with experiments from the paper can be found in the ./experiments directory. You can use the train.sh script or specifically:

Single-GPU

To train a Volumetric model with softmax aggregation using 1 GPU, run:

python train.py \
  --config experiments/human36m/train/human36m_vol_softmax_single.yaml \
  --logdir ./logs

The training will start with the config file specified by --config, and logs (including tensorboard files) will be stored in --logdir.

Multi-GPU

Multi-GPU training is implemented with PyTorch's DistributedDataParallel. It can be used both for single-machine and multi-machine (cluster) training. To run the processes use the PyTorch launch utility.

To train our model using 4 GPUs on single machine, run:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=2345 --sync_bn\
  train.py  \
  --config experiments/human36m/train/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Evaluation

After training, you can evaluate the model. Inside the same config file, add path to the learned weights (they are dumped to logs dir during training):

model:
    init_weights: true
    checkpoint: {PATH_TO_WEIGHTS}

Single-GPU

Run:

python train.py \
  --eval --eval_dataset val \
  --config experiments/human36m/eval/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Multi-GPU

Using 4 GPUs on single machine, Run:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=2345 \
  train.py  --eval --eval_dataset val \
  --config experiments/human36m/eval/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Argument --eval_dataset can be val or train. Results can be seen in logs directory or in the tensorboard.

Results & Model Zoo

  • We evaluate ContextPose on two available large benchmarks: Human3.6M and MPI-INF-3DHP.
  • To get the results reported in our paper, you can download the weights and place to ./logs.
Dataset to be evaluated Weights Results
Human3.6M link 43.4mm (MPJPE)
MPI-INF-3DHP link 81.5 (PCK), 43.6 (AUC)
  • For H36M, the main metric is MPJPE (Mean Per Joint Position Error) which is L2 distance averaged over all joints. To get the result, run as stated above.
  • For 3DHP, Percentage of Correctly estimated Keypoints (PCK) as well as Area Under the Curve (AUC) are reported. Note that we directly apply our model trained on H36M dataset to 3DHP dataset without re-training to evaluate the generalization performance. To prevent from over-fitting to the H36M-style appearance, we only change the training strategy that we fix the backbone to train 20 epoch before we train the whole network end-to-end. If you want to eval on MPI-INF-3DHP, you can save the results and use the official evaluation code in Matlab.

Human3.6M

MPI-INF-3DHP

Citation

If you use our code or models in your research, please cite with:

@article{ma2021context,
  title={Context Modeling in 3D Human Pose Estimation: A Unified Perspective},
  author={Ma, Xiaoxuan and Su, Jiajun and Wang, Chunyu and Ci, Hai and Wang, Yizhou},
  journal={arXiv preprint arXiv:2103.15507},
  year={2021}
} 

Acknowledgement

This repo is built on https://github.com/karfly/learnable-triangulation-pytorch. Part of the data are provided by https://github.com/una-dinosauria/3d-pose-baseline.

Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022