This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Overview

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021)

Introduction

This repository is the offical Pytorch implementation of ContextPose, Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021). Below is the example pipeline of using ContextPose for 3D pose estimation. overall pipeline

Quick start

Environment

This project is developed using >= python 3.5 on Ubuntu 16.04. NVIDIA GPUs are needed.

Installation

  1. Clone this repo, and we'll call the directory that you cloned as ${ContextPose_ROOT}.
  2. Install dependences.
    1. Install pytorch >= v1.4.0 following official instruction.
    2. Install other packages. This project doesn't have any special or difficult-to-install dependencies. All installation can be down with:
    pip install -r requirements.txt
  3. Download data following the next section. In summary, your directory tree should be like this
${ContextPose_ROOT}
├── data
├── experiments
├── mvn
├── logs 
├── README.md
├── process_h36m.sh
├── requirements.txt
├── train.py
`── train.sh

Data

Note: We provide the training and evaluation code on Human3.6M dataset. We do NOT provide the source data. We do NOT own the data or have permission to redistribute the data. Please download according to the official instructions.

Human3.6M

  1. Install CDF C Library by following (https://stackoverflow.com/questions/37232008/how-read-common-data-format-cdf-in-python/58167429#58167429), which is neccessary for processing Human3.6M data.
  2. Download and preprocess the dataset by following the instructions in mvn/datasets/human36m_preprocessing/README.md.
  3. To train ContextPose model, you need rough estimations of the pelvis' 3D positions both for train and val splits. In the paper we use the precalculated 3D skeletons estimated by the Algebraic model proposed in learnable-triangulation (which is an opensource repo and we adopt their Volumetric model to be our baseline.) All pretrained weights and precalculated 3D skeletons can be downloaded at once from here and placed to ./data/pretrained. Here, we fine-tuned the pretrained weight on the Human3.6M dataset for another 20 epochs, please download the weight from here and place to ./data/pretrained/human36m.
  4. We provide the limb length mean and standard on the Human3.6M training set, please download from here and place to ./data/human36m/extra.
  5. Finally, your data directory should be like this (for more detailed directory tree, please refer to README.md)
${ContextPose_ROOT}
|-- data
    |-- human36m
    |   |-- extra
    |   |   | -- una-dinosauria-data
    |   |   | -- ...
    |   |   | -- mean_and_std_limb_length.h5
    |   `-- ...
    `-- pretrained
        |-- human36m
            |-- human36m_alg_10-04-2019
            |-- human36m_vol_softmax_10-08-2019
            `-- backbone_weights.pth

Train

Every experiment is defined by .config files. Configs with experiments from the paper can be found in the ./experiments directory. You can use the train.sh script or specifically:

Single-GPU

To train a Volumetric model with softmax aggregation using 1 GPU, run:

python train.py \
  --config experiments/human36m/train/human36m_vol_softmax_single.yaml \
  --logdir ./logs

The training will start with the config file specified by --config, and logs (including tensorboard files) will be stored in --logdir.

Multi-GPU

Multi-GPU training is implemented with PyTorch's DistributedDataParallel. It can be used both for single-machine and multi-machine (cluster) training. To run the processes use the PyTorch launch utility.

To train our model using 4 GPUs on single machine, run:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=2345 --sync_bn\
  train.py  \
  --config experiments/human36m/train/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Evaluation

After training, you can evaluate the model. Inside the same config file, add path to the learned weights (they are dumped to logs dir during training):

model:
    init_weights: true
    checkpoint: {PATH_TO_WEIGHTS}

Single-GPU

Run:

python train.py \
  --eval --eval_dataset val \
  --config experiments/human36m/eval/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Multi-GPU

Using 4 GPUs on single machine, Run:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=2345 \
  train.py  --eval --eval_dataset val \
  --config experiments/human36m/eval/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Argument --eval_dataset can be val or train. Results can be seen in logs directory or in the tensorboard.

Results & Model Zoo

  • We evaluate ContextPose on two available large benchmarks: Human3.6M and MPI-INF-3DHP.
  • To get the results reported in our paper, you can download the weights and place to ./logs.
Dataset to be evaluated Weights Results
Human3.6M link 43.4mm (MPJPE)
MPI-INF-3DHP link 81.5 (PCK), 43.6 (AUC)
  • For H36M, the main metric is MPJPE (Mean Per Joint Position Error) which is L2 distance averaged over all joints. To get the result, run as stated above.
  • For 3DHP, Percentage of Correctly estimated Keypoints (PCK) as well as Area Under the Curve (AUC) are reported. Note that we directly apply our model trained on H36M dataset to 3DHP dataset without re-training to evaluate the generalization performance. To prevent from over-fitting to the H36M-style appearance, we only change the training strategy that we fix the backbone to train 20 epoch before we train the whole network end-to-end. If you want to eval on MPI-INF-3DHP, you can save the results and use the official evaluation code in Matlab.

Human3.6M

MPI-INF-3DHP

Citation

If you use our code or models in your research, please cite with:

@article{ma2021context,
  title={Context Modeling in 3D Human Pose Estimation: A Unified Perspective},
  author={Ma, Xiaoxuan and Su, Jiajun and Wang, Chunyu and Ci, Hai and Wang, Yizhou},
  journal={arXiv preprint arXiv:2103.15507},
  year={2021}
} 

Acknowledgement

This repo is built on https://github.com/karfly/learnable-triangulation-pytorch. Part of the data are provided by https://github.com/una-dinosauria/3d-pose-baseline.

Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
Facebook Research 605 Jan 02, 2023
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022