Additional code for Stable-baselines3 to load and upload models from the Hub.

Overview

Hugging Face x Stable-baselines3

A library to load and upload Stable-baselines3 models from the Hub.

Installation

With pip

Examples

[Todo: add colab tutorial]

Case 1: I want to download a model from the Hub

import gym

from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO

env = gym.make("CartPole-v1")

model = PPO("MlpPolicy", env, verbose=1)

# Retrieve the model from the hub
## repo_id =  id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename = name of the model zip file from the repository
checkpoint = load_from_hub(repo_id="ThomasSimonini/ppo-CartPole-v1", filename="CartPole-v1")
PPO.load(checkpoint)

obs = env.reset()
for i in range(1000):
    action, _states = model.predict(obs, deterministic=True)
    obs, reward, done, info = env.step(action)
    env.render()
    if done:
      obs = env.reset()

env.close()

Case 2: I trained an agent and want to upload it to the Hub

First you need to be logged in to Hugging Face:

  • If you're using Colab/Jupyter Notebooks:
from huggingface_hub import notebook_login
notebook_login()
  • Else:
huggingface-cli login

Then:

import gym
from huggingface_sb3 import push_to_hub
from stable_baselines3 import PPO

# Create the environment
env = gym.make('CartPole-v1')

# Define a PPO MLpPolicy architecture
model = PPO('MlpPolicy', env, verbose=1)

# Train it for 10000 timesteps
model.learn(total_timesteps=10000)

# Save the model 
model.save("CartPole-v1")

# Push this saved model to the hf repo
# If this repo does not exists it will be created
## filename: the name of the file == "name" inside model.save("CartPole-v1")
push_to_hub(repo_name = "CartPole-v1",
           organization = "ThomasSimonini",  
           filename = "CartPole-v1", 
           commit_message = "Added Cartpole-v1 trained model")
Comments
  • Environment name normalization and explicit naming schemes

    Environment name normalization and explicit naming schemes

    There was an issue with environment names, that have a slash in their name (see https://github.com/DLR-RM/rl-baselines3-zoo/pull/257). Also the naming scheme for models and repository IDs is just based on convention.

    This PR implements normalization for environment names (replacing slashes with dashes) and encodes the naming scheme for models and repository IDs in little helper classes. The idea is, that those helper classes can be used by downstream libraries to comply with the naming scheme (such as the rl baselines zoo). If we ever need to change the naming scheme or other cases in which the environment name needs to be normalized come up, then we can implement them here and the downstream libraries immediately profit from that.

    I also added a simple smoke test for pulling a model from the hub.

    opened by ernestum 8
  • 400 Client Error for `package_to_hub` function

    400 Client Error for `package_to_hub` function

    I am going through the notebook of Unit 1 of the deep RL course. However, I cannot run the package_to_hub function, which gives the following error:

    HTTPError                                 Traceback (most recent call last)
    
    [<ipython-input-26-97f48e41190b>](https://localhost:8080/#) in <module>
         25                eval_env=eval_env,
         26                repo_id="LorenzoPacchiardi/ppo-LunarLander-v2",
    ---> 27                commit_message="Upload PPO LunarLander-v2 trained agent (50 steps)")
    
    6 frames
    
    [/usr/local/lib/python3.7/dist-packages/requests/models.py](https://localhost:8080/#) in raise_for_status(self)
        939 
        940         if http_error_msg:
    --> 941             raise HTTPError(http_error_msg, response=self)
        942 
        943     def close(self):
    
    HTTPError: 400 Client Error: Bad Request for url: https://huggingface.co/api/models/LorenzoPacchiardi/ppo-LunarLander-v2/commit/main (Request ID: fhQtAuS_qa8bj_c6AI0v5)
    

    I get a similar error with push_to_hub

    I logged in to huggingface correctly with the token, and the load_from_hub function works fine.

    opened by LoryPack 5
  • package_to_hub requires OpenGL and xvfb which are not present on newer Mac OS systems

    package_to_hub requires OpenGL and xvfb which are not present on newer Mac OS systems

    Currently package_to_hub works only for OpenGL capable computers. It doesn't support any other option for generating video and it doesn't allow to upload model without a video. All new Mac OSes don't have OpenGL support any more.

    opened by marcin-sobocinski 3
  • Error installing huggingface_sb3

    Error installing huggingface_sb3

    Hi! I'm running this notebook https://github.com/huggingface/deep-rl-class/blob/main/unit1/unit1.ipynb from your DRL series. Installation of some libraries is causing some issues. For huggingface_sb3, it is:

    Collecting huggingface_sb3
      Using cached huggingface_sb3-2.0.0-py3-none-any.whl (7.4 kB)
    Requirement already satisfied: wasabi in ./rl/lib/python3.8/site-packages (from huggingface_sb3) (0.9.1)
    Collecting cloudpickle==1.6
      Using cached cloudpickle-1.6.0-py3-none-any.whl (23 kB)
    Collecting pyyaml==6.0
      Using cached PyYAML-6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (701 kB)
    Collecting huggingface-hub
      Using cached huggingface_hub-0.6.0-py3-none-any.whl (84 kB)
    Collecting pickle5
      Using cached pickle5-0.0.11.tar.gz (132 kB)
      Preparing metadata (setup.py) ... done
    Collecting typing-extensions>=3.7.4.3
      Using cached typing_extensions-4.2.0-py3-none-any.whl (24 kB)
    Requirement already satisfied: packaging>=20.9 in ./rl/lib/python3.8/site-packages (from huggingface-hub->huggingface_sb3) (21.3)
    Collecting filelock
      Using cached filelock-3.7.0-py3-none-any.whl (10 kB)
    Collecting tqdm
      Using cached tqdm-4.64.0-py2.py3-none-any.whl (78 kB)
    Collecting requests
      Using cached requests-2.27.1-py2.py3-none-any.whl (63 kB)
    Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in ./rl/lib/python3.8/site-packages (from packaging>=20.9->huggingface-hub->huggingface_sb3) (3.0.9)
    Collecting urllib3<1.27,>=1.21.1
      Using cached urllib3-1.26.9-py2.py3-none-any.whl (138 kB)
    Collecting certifi>=2017.4.17
      Using cached certifi-2021.10.8-py2.py3-none-any.whl (149 kB)
    Collecting charset-normalizer~=2.0.0
      Using cached charset_normalizer-2.0.12-py3-none-any.whl (39 kB)
    Collecting idna<4,>=2.5
      Using cached idna-3.3-py3-none-any.whl (61 kB)
    Using legacy 'setup.py install' for pickle5, since package 'wheel' is not installed.
    Installing collected packages: pickle5, certifi, urllib3, typing-extensions, tqdm, pyyaml, idna, filelock, cloudpickle, charset-normalizer, requests, huggingface-hub, huggingface_sb3
      Running setup.py install for pickle5 ... error
      error: subprocess-exited-with-error
      
      × Running setup.py install for pickle5 did not run successfully.
      │ exit code: 1
      ╰─> [27 lines of output]
          running install
          /media/master/support/pip_envs/rl/lib/python3.8/site-packages/setuptools/command/install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
            warnings.warn(
          running build
          running build_py
          creating build
          creating build/lib.linux-x86_64-cpython-38
          creating build/lib.linux-x86_64-cpython-38/pickle5
          copying pickle5/__init__.py -> build/lib.linux-x86_64-cpython-38/pickle5
          copying pickle5/pickle.py -> build/lib.linux-x86_64-cpython-38/pickle5
          copying pickle5/pickletools.py -> build/lib.linux-x86_64-cpython-38/pickle5
          creating build/lib.linux-x86_64-cpython-38/pickle5/test
          copying pickle5/test/pickletester.py -> build/lib.linux-x86_64-cpython-38/pickle5/test
          copying pickle5/test/test_picklebuffer.py -> build/lib.linux-x86_64-cpython-38/pickle5/test
          copying pickle5/test/__init__.py -> build/lib.linux-x86_64-cpython-38/pickle5/test
          copying pickle5/test/test_pickle.py -> build/lib.linux-x86_64-cpython-38/pickle5/test
          running build_ext
          building 'pickle5._pickle' extension
          creating build/temp.linux-x86_64-cpython-38
          creating build/temp.linux-x86_64-cpython-38/pickle5
          x86_64-linux-gnu-gcc -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O2 -Wall -g -fstack-protector-strong -Wformat -Werror=format-security -g -fwrapv -O2 -fPIC -I/media/master/support/pip_envs/rl/include -I/usr/include/python3.8 -c pickle5/_pickle.c -o build/temp.linux-x86_64-cpython-38/pickle5/_pickle.o -std=c99
          In file included from pickle5/_pickle.c:2:
          pickle5/compat.h:1:10: fatal error: Python.h: No such file or directory
              1 | #include "Python.h"
                |          ^~~~~~~~~~
          compilation terminated.
          error: command '/usr/bin/x86_64-linux-gnu-gcc' failed with exit code 1
          [end of output]
      
      note: This error originates from a subprocess, and is likely not a problem with pip.
    error: legacy-install-failure
    
    × Encountered error while trying to install package.
    ╰─> pickle5
    
    note: This is an issue with the package mentioned above, not pip.
    

    I tried installing it with python 3.9 and 3.8 on Ubuntu 22.04 OS.

    Are there any additional requirements to use your library?

    opened by kirilllzaitsev 3
  • generate_replay created a video.mp4 file locally

    generate_replay created a video.mp4 file locally

    This code snippet

    env = VecVideoRecorder(
            eval_env,
            "./",  # Temporary video folder
            record_video_trigger=lambda x: x == 0,
            video_length=video_length,
            name_prefix="",
        )
    

    generated a video file wherever the user is. In the temporary video folder, you can use tempfile.TemporaryDirectory() to automatically create a directory that will be deleted afterwards

    opened by osanseviero 2
  • Rebase repo when pulling

    Rebase repo when pulling

    I think you want to rebase, as we tend to do this in all the mixins in huggingface_hub. I think not having this is what caused this issue: https://github.com/huggingface/deep-rl-class/issues/20.

    opened by nateraw 2
  • Add `VecNormalize` support

    Add `VecNormalize` support

    • add missing type hints
    • fix push_to_hub (bug detected by pytype checker)
    • cleanup
    • add support for VecNormalize

    closes #6

    Demo (and training/loading code): https://huggingface.co/araffin/a2c-Pendulum-v1

    opened by araffin 1
  • Add auto release

    Add auto release

    The behavior with this PR is that once you push a Git tag with v* (usually v1.0.8 for example), which should ideally point to the commit that updates this line https://github.com/huggingface/huggingface_sb3/blob/main/setup.py#L10 (you can push the tag after the commit), it will automatically make a pypi release.

    The only requirement is adding your secret (PYPI_TOKEN_DIST) to the repo settings

    opened by osanseviero 1
  • Allow to pass TensorBoard logs files to package_to_hub

    Allow to pass TensorBoard logs files to package_to_hub

    It's very easy to add TensorBoard logging with SB3, but pushing the files right now needs to be done manually. As an alternative, we could add a param to package_to_hub to pass the logs.

    Related: https://github.com/huggingface/deep-rl-class/pull/19

    opened by osanseviero 0
  • Don't crash when making videos causes problems

    Don't crash when making videos causes problems

    At the moment, if generate_replay fails, the whole package_to_hub method fails. Ideally it would still push the metrics and other related information even if no video is generated

    opened by osanseviero 0
  • Huggingface_SB3 v2.0

    Huggingface_SB3 v2.0

    👋 so here's the SB3 v2.0:

    With our new version we can use package_to_hub method that:

    1. Save the model
    2. Evaluate the model and generate a results.json
    3. Generate a model card
    4. Record a replay video of the agent
    5. Push everything to the hub Here's an example : https://huggingface.co/ThomasSimonini/TEST2-Colab-ppo-LunarLander-v2 (very small training so the agent is bad)

    If you want to try some examples directly on colab I've made a small test colab: https://colab.research.google.com/drive/1FhZ1w7smqPo8GQcW5qb2HmkggZVuok57?usp=sharing

    The PyPi update is also automated thanks to @osanseviero

    A big thanks to Omar who made a lot of tests with the library

    I need a little bit of feedback for the documentation, I think it's not very clear.

    • I explain the 2 cases: downstream and upstream
    • In case 3-4 I explain how to use xvfb if you use colab or vm (because you don't have a screen to render so you can't generate a video without xvfb).

    WDYT? Thanks

    opened by simoninithomas 0
Releases(v2.2.4)
  • v2.2.4(Oct 13, 2022)

    What's Changed

    • Loosen the requirements by @araffin in https://github.com/huggingface/huggingface_sb3/pull/19

    Full Changelog: https://github.com/huggingface/huggingface_sb3/compare/v2.2.3...v2.2.4

    Source code(tar.gz)
    Source code(zip)
  • v2.2.3(Aug 5, 2022)

    Cloudpickle is 1.3 by default on Colab. We need at minimum 1.6 for package_to_hub and load_from_hub to work correctly.

    Full Changelog: https://github.com/huggingface/huggingface_sb3/compare/v2.2.2...v2.2.3

    Source code(tar.gz)
    Source code(zip)
  • v2.2.2(Aug 1, 2022)

    What's Changed

    • V2.2.2 by @simoninithomas in https://github.com/huggingface/huggingface_sb3/pull/17
    • Pinning this dependency leads to some uploading problems. We removed it

    Full Changelog: https://github.com/huggingface/huggingface_sb3/compare/v2.2.1...v2.2.2

    Source code(tar.gz)
    Source code(zip)
  • v2.2.1(Jul 8, 2022)

    What's Changed

    • Notebook fixes by @ernestum in https://github.com/huggingface/huggingface_sb3/pull/12
    • Environment name normalization and explicit naming schemes by @ernestum in https://github.com/huggingface/huggingface_sb3/pull/13
    • Use new upload_folder API by @osanseviero in https://github.com/huggingface/huggingface_sb3/pull/15

    New Contributors

    • @ernestum made their first contribution in https://github.com/huggingface/huggingface_sb3/pull/12

    Full Changelog: https://github.com/huggingface/huggingface_sb3/compare/v2.1.1...v2.2

    Source code(tar.gz)
    Source code(zip)
  • v2.1.0(May 20, 2022)

    What's Changed

    • Use make_vec_env to create envs by @araffin in https://github.com/huggingface/huggingface_sb3/pull/3
    • Rebase repo when pulling by @nateraw in https://github.com/huggingface/huggingface_sb3/pull/7
    • Fix record video for RecurrentPPO by @araffin in https://github.com/huggingface/huggingface_sb3/pull/8
    • Add VecNormalize support by @araffin in https://github.com/huggingface/huggingface_sb3/pull/10

    New Contributors

    • @araffin made their first contribution in https://github.com/huggingface/huggingface_sb3/pull/3
    • @nateraw made their first contribution in https://github.com/huggingface/huggingface_sb3/pull/7

    Full Changelog: https://github.com/huggingface/huggingface_sb3/compare/v2.0.0...v2.1.0

    Source code(tar.gz)
    Source code(zip)
Owner
Hugging Face
The AI community building the future.
Hugging Face
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023