Revisiting Global Statistics Aggregation for Improving Image Restoration

Related tags

Deep Learningtlsc
Overview

PWC PWC

Revisiting Global Statistics Aggregation for Improving Image Restoration

Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu

Paper: https://arxiv.org/pdf/2112.04491.pdf

Introduction

This repository is an official implementation of the TLSC. We propose Test-time Local Statistics Converter (TLSC), which replaces the statistic aggregation region from the entire spatial dimension to the local window, to mitigate the issue between training and testing. Our approach has no requirement of retraining or finetuning, and only induces marginal extra costs.

arch

Illustration of training and testing schemes of image restoration. From left to right: image from the dataset; input for the restorer (patches or entire-image depend on the scheme); aggregating statistics from the feature map. For (a), (b), and (c), statistics are aggregated along the entire spatial dimension. (d) Ours, statistics are aggregated in a local region for each pixel.

Abstract

Global spatial statistics, which are aggregated along entire spatial dimensions, are widely used in top-performance image restorers. For example, mean, variance in Instance Normalization (IN) which is adopted by HINet, and global average pooling (ie, mean) in Squeeze and Excitation (SE) which is applied to MPRNet. This paper first shows that statistics aggregated on the patches-based/entire-image-based feature in the training/testing phase respectively may distribute very differently and lead to performance degradation in image restorers. It has been widely overlooked by previous works. To solve this issue, we propose a simple approach, Test-time Local Statistics Converter (TLSC), that replaces the region of statistics aggregation operation from global to local, only in the test time. Without retraining or finetuning, our approach significantly improves the image restorer's performance. In particular, by extending SE with TLSC to the state-of-the-art models, MPRNet boost by 0.65 dB in PSNR on GoPro dataset, achieves 33.31 dB, exceeds the previous best result 0.6 dB. In addition, we simply apply TLSC to the high-level vision task, ie, semantic segmentation, and achieves competitive results. Extensive quantity and quality experiments are conducted to demonstrate TLSC solves the issue with marginal costs while significant gain.

Usage

Installation

This implementation based on BasicSR which is a open source toolbox for image/video restoration tasks.

git clone https://github.com/megvii-research/tlsc.git
cd tlsc
pip install -r requirements.txt
python setup.py develop

Quick Start (Single Image Inference)

Main Results

Method GoPro GoPro HIDE HIDE REDS REDS
PSNR SSIM PSNR SSIM PSNR SSIM
HINet 32.71 0.959 30.33 0.932 28.83 0.863
HINet-local (ours) 33.08 0.962 30.66 0.936 28.96 0.865
MPRNet 32.66 0.959 30.96 0.939 - -
MPRNet-local (ours) 33.31 0.964 31.19 0.942 - -

Evaluation

Image Deblur - GoPro dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/GoPro

    • download the test set in ./datasets/GoPro/test (refer to MPRNet)

    • it should be like:

      ./datasets/
      ./datasets/GoPro/test/
      ./datasets/GoPro/test/input/
      ./datasets/GoPro/test/target/
  • eval

    • download pretrained HINet to ./experiments/pretrained_models/HINet-GoPro.pth

    • python basicsr/test.py -opt options/test/HIDE/MPRNetLocal-HIDE.yml

    • download pretrained MPRNet to ./experiments/pretrained_models/MPRNet-GoPro.pth

    • python basicsr/test.py -opt options/test/HIDE/MPRNetLocal-HIDE.yml

Image Deblur - HIDE dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/HIDE

    • download the test set in ./datasets/HIDE/test (refer to MPRNet)

    • it should be like:

      ./datasets/
      ./datasets/HIDE/test/
      ./datasets/HIDE/test/input/
      ./datasets/HIDE/test/target/
  • eval

    • download pretrained HINet to ./experiments/pretrained_models/HINet-GoPro.pth

    • python basicsr/test.py -opt options/test/GoPro/MPRNetLocal-GoPro.yml

    • download pretrained MPRNet to ./experiments/pretrained_models/MPRNet-GoPro.pth

    • python basicsr/test.py -opt options/test/GoPro/MPRNetLocal-GoPro.yml

Image Deblur - REDS dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/REDS

    • download the val set from val_blur, val_sharp to ./datasets/REDS/ and unzip them.

    • it should be like

      ./datasets/
      ./datasets/REDS/
      ./datasets/REDS/val/
      ./datasets/REDS/val/val_blur_jpeg/
      ./datasets/REDS/val/val_sharp/
      
    • python scripts/data_preparation/reds.py

      • flatten the folders and extract 300 validation images.
  • eval

    • download pretrained HINet to ./experiments/pretrained_models/HINet-REDS.pth
    • python basicsr/test.py -opt options/test/REDS/HINetLocal-REDS.yml

Tricks: Change the 'fast_imp: false' (naive implementation) to 'fast_imp: true' (faster implementation) in MPRNetLocal config can achieve faster inference speed.

License

This project is under the MIT license, and it is based on BasicSR which is under the Apache 2.0 license.

Citations

If TLSC helps your research or work, please consider citing TLSC.

@article{chu2021tlsc,
  title={Revisiting Global Statistics Aggregation for Improving Image Restoration},
  author={Chu, Xiaojie and Chen, Liangyu and and Chen, Chengpeng and Lu, Xin},
  journal={arXiv preprint arXiv:2112.04491},
  year={2021}
}

Contact

If you have any questions, please contact [email protected] or [email protected].

Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022