PCGNN - Procedural Content Generation with NEAT and Novelty

Related tags

Deep LearningPCGNN
Overview

PCGNN - Procedural Content Generation with NEAT and Novelty

Generation ApproachMetricsPaperPosterExamples

About

This is a research project for a BSc (Hons) degree at the University of the Witwatersrand, Johannesburg. It's about combining novelty search and NeuroEvolution of Augmenting Topologies (NEAT) for procedural level generation. We also investigate two new metrics for evaluating the diversity and difficulty of levels. This repo contains our code as well as the final report.

If you just want to get started generating or playing levels, then please look at how to generate levels or the examples. Also feel free to look at the report or a poster that summarises our approach. For information about the metrics and how to use them, see here.

General structure

The main structure of the code is (hopefully) somewhat understandable. First of all, to run any python file in here, use ./run.sh path/to/python/file instead of using python directly, because otherwise modules are not recognised.

Most code in here can be categorised into 3 main archetypes:

  1. General / Method code. This is how the methods were actually implemented, and these files don't do anything useful when run on their own.
  2. Runs / Experiment code. This is a large chunk of what is in here, specifically it is code that runs the methods in some way, and generates results. Most of the results that we generate are in python pickle format.
  3. Analysis Code. We have a pretty clear separation between experiment code (which runs the methods), and analysis code, which takes in the results and generates some usable output, like images, tables, graphs, etc.

File Structure

Most of these are relative to ./src

Method Code
├── novelty_neat     -> Our actual method
├── main
├── baselines
├── games
├── common
├── metrics

Instrumental
├── experiments
├── pipelines
├── runs
├── run.sh
├── scripts
└── slurms

Analysis
├── analysis
├── external

Data
├── levels
├── logs
├── results
├── ../results

Document
├── ../doc/report.pdf

Explanation

The method roughly works as follows:

  1. Evolve a neural network using NEAT (with neat-python)
  2. The fitness function for each neural network is as follows:
    1. Generate N levels per network
    2. Calculate the average solvability of these N levels
    3. Calculate how different these N levels are from each other (called intra-novelty). Calculate the average of this.
    4. Calculate how different these N levels are from the other networks' levels (normal novelty)
    5. Fitness (network) = w1 * Solvability + w2 * Intra-Novelty + w3 * Novelty.
  3. Update the networks using the above calculated fitness & repeat for X generations.

After this 'training' process, take the best network and use it to generate levels in real time.

The way novelty is calculated can be found in the report, or from the original paper by Joel Lehman and Kenneth O. Stanley, here.

We compare levels by considering a few different distance functions, like the normalised Hamming Distance and Image Hashing, but others can also be used.

Get started

To get started you would require a python environment, and env.yml is provided to quickly get started with Conda. Use it like: conda create -f env.yml. There is also another environment that is used specifically for interacting with the gym_pcgrl codebase. If that is something you want to do, then create another environment from the env_pcgrl.yml file.

For full functionality, you will also need java installed. The openjdk 16.0.1 2021-04-20 version worked well.

Additionally, most of the actual experiments used Weights & Biases to log experiments and results, so you would also need to log in using your credentials. The simple entry points described below should not require it.

Entry Points

At the moment, the easiest way to interact with the codebase would be to use the code in src/main/.

Generate Levels.

To have a go at generating levels, then you can use the functions provided in src/main/main.py. Specifically you can call this (remember to be in the src directory before running these commands):

./run.sh main/main.py --method noveltyneat --game mario --mode generate --width 114 --height 14

The above allows you to view some generated levels.

Playing Levels

You can also play the (Mario) levels, or let an agent play them. After generating a level using the above, you can play it by using:

./run.sh main/main.py --game mario --command play-human --filename test_level.txt

Or you can let an A* agent play it using

./run.sh main/main.py --game mario --command play-agent --filename test_level.txt

Features

Works for Tilemaps

Mario Mario

Generates arbitrary sized levels without retraining

Mario

Mario-28 Mario-56 Mario-114 Mario-228

Maze



Experiments

We have many different experiments, with the following meaning:

Generalisation - Generate Larger levels

  • v206: Mario
  • v104: Maze NEAT
  • v107: Maze DirectGA

Metrics

  • v202: Mario
  • v106: Maze

Method runs

  • v105: Maze NEAT
  • v102: Maze DirectGA
  • v204: Mario NEAT
  • v201: Mario DirectGA

The PCGRL code can be found in ./src/external/gym-pcgrl

Reproducing

Our results that were shown and mentioned in the report are mainly found in src/results/.

The following describes how to reproduce our results. Note, there might be some difference in the ordering of the images (e.g. mario-level-0.png and mario-level-1.png will swap), but the set of level images generated should be exactly the same.

The whole process contains 3 steps, and does assume a Slurm based cluster scheduler. Please also change the logfile locations (look at running src/pipelines/replace_all_paths.sh from the repository root after changing paths in there - this updates all paths, and decompresses some results). Our partition name was batch, so this also potentially needs to be updated in the Slurm scripts.

You need to run the following three scripts, in order, and before you start the next one, all the jobs from the previous one must have finished.

Note, timing results probably will differ, and for fairness, we recommend using a machine with at least 8 cores, as we do usually run multiple seeds in parallel. Do not continue on to the next step before all runs in the current one have finished. First of all, cd src/pipelines

  1. ./reproduce_full.sh -> Runs the DirectGA & NoveltyNEAT experiments.
  2. ./analyse_all.sh -> Reruns the metric calculations on the above, and saves it to a easy to work with format
  3. ./finalise_analysis.sh -> Uses the above results to create figures and tables.

The analysis runs (steps 2 and 3.) should automatically use the latest results. If you want to change this, then before going from one step to the next, you will need to manually update the location of the .p files, e.g. between step 1. and 2., you need to update

  • src/analysis/proper_experiments/v200/for_mario_generation_1.py,
  • src/analysis/proper_experiments/v100/for_maze_1.py,
  • src/analysis/proper_experiments/v100/analyse_104.py
  • src/analysis/proper_experiments/v200/analyse_206.py.

Likewise, between step 2. and 3., you need to update (only if you don't want to analyse the latest runs.)

  • src/analysis/proper_experiments/v400/analyse_all_statistical_tests.py and
  • src/analysis/proper_experiments/v400/analyse_all_metrics_properly.py.

For PCGRL, the runs do take quite long, so it is suggested to use our models / results. If you really want to rerun the training, you can look at the Slurm scripts in src/slurms/all_pcgrl/*.batch.

For the PCGRL inference, there are two steps to do, specifically:

  1. Run infer_pcgrl.py
  2. Then run the analysis scripts again, specifically analyse_all.sh and finalise_analysis.sh (noting to change the PCGRL filepaths in for_mario_generation_1.py and for_maze_1.py)

Note: The models for turtle (both Mario and Maze) were too large for Github and are thus not included here, but wide is.

Metrics

We also introduce 2 metrics to measure the diversity and difficulty of levels using A* agents. The code for these metrics are in metrics/a_star/a_star_metrics.py.

A* Diversity Metric

The A* diversity metric uses the trajectory of the agent on two levels to evaluate the diversity. Levels that are solved using different paths are marked as diverse, whereas levels with similar paths are marked as similar.

Largely Similar levels

Diversity = 0.08

Left         Right

Different Levels

Diversity = 0.27

Left         Right

All paths

The green and orange paths are quite similar, leading to low diversity

A* Difficulty

This metric measures how much of the search tree of an A* agent needs to be expanded before the agent can solve the level - more expansion indicates more exploration is required and that the level is more difficult.

Left         Right

Applying the metrics code to levels is done in (among others) src/runs/proper_experiments/v300_metrics.

We also experimented with using RL agents to measure the above characteristics, and results looked promising, but the implementation posed some challenges.

Feel free to look in

  • metrics/rl/tabular/rl_agent_metric.py
  • metrics/rl/tabular/tabular_rl_agent.py
  • metrics/rl/tabular/rl_difficulty_metric.py

for this code.

Assorted

Island Models

There is also some code (not thoroughly tested) that uses multiple island populations and performs regular migration between them and these can be found in novelty_neat/mario/test/island_mario.py, novelty_neat/maze/test/island_model.py and src/runs/proper_experiments/v200_mario/v203_island_neat.py.

Other repositories and projects used

These can be found in src/external. We did edit and adapt some of the code, but most of it is still original.

Some ideas from here

And some snippets from Stack Overflow, which I've tried to reference where they were used.

Acknowledgements

This work is based on the research supported wholly by the National Research Foundation of South Africa (Grant UID 133358).

Owner
Michael Beukman
Michael Beukman
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of gi

Yasunori Shimura 8 Apr 11, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023