Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

Related tags

Deep Learningrascanet
Overview

RaScaNet: Learning Tiny Models by Raster-Scanning Images

Deploying deep convolutional neural networks on ultra-low power systems is challenging, because the systems put a hard limit on the size of on-chip memory. To overcome this drawback, we propose a novel Raster-Scanning Network, named RaScaNet, inspired by raster-scanning in image sensors.

RaScaNet reads only a few rows of pixels at a time using a convolutional neural network and then sequentially learns the representation of the whole image using a recurrent neural network. The proposed method requires 15.9-24.3x smaller peak memory and 5.3-12.9x smaller weight memory than the state-of-the-art tiny models. The total memory usage of RaScaNet does not exceed 60 KB, in the VWW dataset with competitive accuracy.

Requirements

  • python 3.6
  • torch 1.7.0
  • torchvision 0.8.1
  • pycocotools 2.0.1
  • numpy 0.19.0
  • VWW dataset

Usage

For running the model, (only support vww dataset)

  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=240 --model_path=checkpoint/rascanet_210x240.pth.tar
  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=120 --model_path=checkpoint/rascanet_105x120.pth.tar

With early termination,

  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=240 --model_path=checkpoint/rascanet_210x240.pth.tar --early_terminate=1
  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=120 --model_path=checkpoint/rascanet_105x120.pth.tar --early_terminate=1

Currently, we do not provide the code for training.

Result

Model Weight Memory Peak Memory OPs Cnt. Accuracy
rascanet(210x240) 47.03 KB 7.92 KB 56.34 M 91.835%
rascanet(105x120) 31.77 KB 3.60 KB 9.71 M 88.100%

Citation

@InProceedings{Yoo_2021_CVPR,
    author    = {Yoo, Jaehyoung and Lee, Dongwook and Son, Changyong and Jung, Sangil and Yoo, ByungIn and Choi, Changkyu and Han, Jae-Joon and Han, Bohyung},
    title     = {RaScaNet: Learning Tiny Models by Raster-Scanning Images},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {13673-13682}
}

License

Copyright (C) 2021 Samsung Electronics Co. LTD

This software is a property of Samsung Electronics.
No part of this software, either material or conceptual may be copied or distributed, transmitted,
transcribed, stored in a retrieval system or translated into any human or computer language in any form by any means,
electronic, mechanical, manual or otherwise, or disclosed
to third parties without the express written permission of Samsung Electronics.
(Use of the Software is restricted to non-commercial, personal or academic, research purpose only)
Owner
SAIT (Samsung Advanced Institute of Technology)
SAIT (Samsung Advanced Institute of Technology)
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023