Official implementation of the ICLR 2021 paper

Overview

You Only Need Adversarial Supervision for Semantic Image Synthesis

Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial Supervision for Semantic Image Synthesis". The code allows the users to reproduce and extend the results reported in the study. Please cite the paper when reporting, reproducing or extending the results.

[OpenReview] [Arxiv]

Overview

This repository implements the OASIS model, which generates realistic looking images from semantic label maps. In addition, many different images can be generated from any given label map by simply resampling a noise vector (first two rows of the figure below). The model also allows to just resample parts of the image (see the last two rows of the figure below). Check out the paper for details, as well as the appendix, which contains many additional examples.

Setup

First, clone this repository:

git clone https://github.com/boschresearch/OASIS.git
cd OASIS

The code is tested for Python 3.7.6 and the packages listed in oasis.yml. The basic requirements are PyTorch and Torchvision. The easiest way to get going is to install the oasis conda environment via

conda env create --file oasis.yml
source activate oasis

Datasets

For COCO-Stuff, Cityscapes or ADE20K, please follow the instructions for the dataset preparation as outlined in https://github.com/NVlabs/SPADE.

Training the model

To train the model, execute the training scripts in the scripts folder. In these scripts you first need to specify the path to the data folder. Via the --name parameter the experiment can be given a unique identifier. The experimental results are then saved in the folder ./checkpoints, where a new folder for each run is created with the specified experiment name. You can also specify another folder for the checkpoints using the --checkpoints_dir parameter. If you want to continue training, start the respective script with the --continue_train flag. Have a look at config.py for other options you can specify.
Training on 4 NVIDIA Tesla V100 (32GB) is recommended.

Testing the model

To test a trained model, execute the testing scripts in the scripts folder. The --name parameter should correspond to the experiment name that you want to test, and the --checkpoints_dir should the folder where the experiment is saved (default: ./checkpoints). These scripts will generate images from a pretrained model in ./results/name/.

Measuring FID

The FID is computed on the fly during training, using the popular PyTorch FID implementation from https://github.com/mseitzer/pytorch-fid. At the beginning of training, the inception moments of the real images are computed before the actual training loop starts. How frequently the FID should be evaluated is controlled via the parameter --freq_fid, which is set to 5000 steps by default. The inception net that is used for FID computation automatically downloads a pre-trained inception net checkpoint. If that automatic download fails, for instance because your server has restricted internet access, get the checkpoint named pt_inception-2015-12-05-6726825d.pth from here and place it in /utils/fid_folder/. In this case, do not forget to replace load_state_dict_from_url function accordingly.

Pretrained models

The checkpoints for the pre-trained models are available here as zip files. Copy them into the checkpoints folder (the default is ./checkpoints, create it if it doesn't yet exist) and unzip them. The folder structure should be

checkpoints_dir
├── oasis_ade20k_pretrained                   
├── oasis_cityscapes_pretrained  
└── oasis_coco_pretrained

You can generate images with a pre-trained checkpoint via test.py. Using the example of ADE20K:

python test.py --dataset_mode ade20k --name oasis_ade20k_pretrained \
--dataroot path_to/ADEChallenge2016

This script will create a folder named ./results in which the resulting images are saved.

If you want to continue training from this checkpoint, use train.py with the same --name parameter and add --continue_train --which_iter best.

Citation

If you use this work please cite

@inproceedings{schonfeld_sushko_iclr2021,
  title={You Only Need Adversarial Supervision for Semantic Image Synthesis},
  author={Sch{\"o}nfeld, Edgar and Sushko, Vadim and Zhang, Dan and Gall, Juergen and Schiele, Bernt and Khoreva, Anna},
  booktitle={International Conference on Learning Representations},
  year={2021}
}   

License

This project is open-sourced under the AGPL-3.0 license. See the LICENSE file for details.

For a list of other open source components included in this project, see the file 3rd-party-licenses.txt.

Purpose of the project

This software is a research prototype, solely developed for and published as part of the publication cited above. It will neither be maintained nor monitored in any way.

Contact

Please feel free to open an issue or contact us personally if you have questions, need help, or need explanations. Write to one of the following email addresses, and maybe put one other in the cc:

[email protected]
[email protected]
[email protected]
[email protected]

Owner
Bosch Research
Bosch Research
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
SIMULEVAL A General Evaluation Toolkit for Simultaneous Translation

SimulEval SimulEval is a general evaluation framework for simultaneous translation on text and speech. Requirement python = 3.7.0 Installation git cl

Facebook Research 48 Dec 28, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021