EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

Overview

EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

Paper on arXiv

EquiBind, is a SE(3)-equivariant geometric deep learning model performing direct-shot prediction of both i) the receptor binding location (blind docking) and ii) the ligand’s bound pose and orientation. EquiBind achieves significant speed-ups and better quality compared to traditional and recent baselines. If you have questions, don't hesitate to open an issue or ask me via [email protected] or social media or Octavian Ganea via [email protected]. We are happy to hear from you!

Dataset

Our preprocessed data (see dataset section in the paper Appendix) is available from zenodo.
The files in data contain the names for the time-based data split.

If you want to train one of our models with the data then:

  1. download it from zenodo
  2. unzip the directory and place it into data such that you have the path data/PDBBind

Use provided model weights to predict binding structure of your own protein-ligand pairs:

Step 1: What you need as input

Ligand files of the formats .mol2 or .sdf or .pdbqt or .pdb.
Receptor files of the format .pdb
For each complex you want to predict you need a directory containing the ligand and receptor file. Like this:

my_data_folder
└───name1
    │   name1_protein.pdb
    │   name1_ligand.sdf
└───name2
    │   name2_protein.pdb
    │   name2_ligand.sdf
...

Step 2: Setup Environment

We will set up the environment using Anaconda. Clone the current repo

git clone https://github.com/HannesStark/EquiBind

Create a new environment with all required packages using environment.yml (this can take a while). While in the project directory run:

conda env create

Activate the environment

conda activate equibind

Here are the requirements themselves if you want to install them manually instead of using the environment.yml:

python=3.7
pytorch 1.10
torchvision
cudatoolkit=10.2
torchaudio
dgl-cuda10.2
rdkit
openbabel
biopython
rdkit
biopandas
pot
dgllife
joblib
pyaml
icecream
matplotlib
tensorboard

Step 3: Predict Binding Structures!

In the config file configs_clean/inference.yml set the path to your input data folder inference_path: path_to/my_data_folder.
Then run:

python inference.py --config=configs_clean/inference.yml

Done! 🎉
Your results are saved as .sdf files in the directory specified in the config file under output_directory: 'data/results/output' and as tensors at runs/flexible_self_docking/predictions_RDKitFalse.pt!

Reproducing paper numbers

Download the data and place it as described in the "Dataset" section above.

Using the provided model weights

To predict binding structures using the provided model weights run:

python inference.py --config=configs_clean/inference_file_for_reproduce.yml

This will give you the results of EquiBind-U and then those of EquiBind after running the fast ligand point cloud fitting corrections.
The numbers are a bit better than what is reported in the paper. We will put the improved numbers into the next update of the paper.

Training a model yourself and using those weights

To train the model yourself, run:

python train.py --config=configs_clean/RDKitCoords_flexible_self_docking.yml

The model weights are saved in the runs directory.
You can also start a tensorboard server tensorboard --logdir=runs and watch the model train.
To evaluate the model on the test set, change the run_dirs: entry of the config file inference_file_for_reproduce.yml to point to the directory produced in runs. Then you can runpython inference.py --config=configs_clean/inference_file_for_reproduce.yml as above!

Reference

📃 Paper on arXiv

@misc{stark2022equibind,
      title={EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction}, 
      author={Hannes Stärk and Octavian-Eugen Ganea and Lagnajit Pattanaik and Regina Barzilay and Tommi Jaakkola},
      year={2022}
}
Owner
Hannes Stärk
MIT Research Intern • Geometric DL + Graphs :heart: • M. Sc. Informatics from TU Munich
Hannes Stärk
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022