Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Overview

Conditional Smiles! (SmileCVAE)

About

Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-strength degree to produce conditional generation of synthetic faces with a given smile degree.

Installation

  1. Clone the repository git clone https://github.com/raulorteg/SmileCVAE
  2. Create virtual environment:
  • Update pip python -m pip install pip --upgrade
  • Install virtualenv using pip python -m pip install virtualenv
  • Create Virtual environment virtualenv SmileCVAE
  • Activate Virtual environment (Mac OS/Linux: source SmileCVAE/bin/activate, Windows: SmileCVAE\Scripts\activate)
  • (Note: to deactivate environemt run deactivate)
  1. Install requirements on the Virtual environment python -m pip install -r requirements.txt

Results

Training

In the .gif below the reconstruction for a group of 32 faces from the dataset can be visualized for all epochs. Training

Below, the final reconstruction of the CVAE for 32 faces of the dataset side by side to those original 32 images, for comparison.

Conditional generation

Using synthetic.py, we can sample from the prior distribution of the CVAE, concatenate the vector with our desired ecnoding of the smile degree and let the CVAE decode this sampled noise into a synthetic face of the desired smile degree. The range of smile-degree encodings in the training set is [-1,+1], where +1 is most smiley, -1 is most non-smiley. Below side to side 64 synthetic images for encodings -0.5, +0.5 are shown produced with this method.

Forcing smiles

With the trained model, one can use the pictures from the training set and instead of feeding in the smile-degree encode of the corresponding picture we can fix an encoding or shift it by a factor to force the image a smile/non smile. Below this is done for 32 picture of the training set, on the op the original 32 images are shown, below the reconstruction with their actual encoding, and then we shift the encoding by +0.5, +0.7, -0.5, -0.7 to change the smile degree in the original picture (zoom in to see in detail!). Finally the same diagram is now shown for a single picture.

The Dataset

The images of the faces come from UTKFace Dataset. However the images do not have any encoding of a continuous degree of "smiley-ness". This "smile-strength" degree is produced by creating a slideshow of the images and exposing them to three subjects (me and a couple friends), by registering wheather the face was classified as smiley or non-smiley we encourage the subjects to answer as fast as possible so as to rely on first impression and the reaction time is registered.

Notes: Bias in the Dataset

Its interesting to see that the when generating synthetic images with encodings < 0 (non-happy) the faces look more male-like and when generating synthetic images with encodings > 0 (happy) they tend to be more female-like. This is more apparent at the extremes, see the Note below. The original dataset although doesnt contains a smile degree encode, it has information of the image encoded in the filename, namely "gender" and "smile" as boolean values. Using this information then I can go and see if there was a bias in the dataset. In the piechart below the distribution of gender, and smile are shown. From there we can see that that although there are equals amount of men and women in the dataset, there were more non-smiley men than smiley men, and the bias of the synthetic generation may come from this unbalance.

Notes: Extending the encoding of smile-degree over the range for synthetic faces

Altough the range of smile-strength in the training set is [-1,+1], when generating synthetic images we can ask the model to generate outside of the range. But notice that then the synthetic faces become much more homogeneus, more than 64 different people it looks like small variations of the same synthetic image. Below side to side 64 synthetic images for encodings -3 (super not happy), +3 (super happy) are shown produced with this method.

References:

  • Fagertun, J., Andersen, T., Hansen, T., & Paulsen, R. R. (2013). 3D gender recognition using cognitive modeling. In 2013 International Workshop on Biometrics and Forensics (IWBF) IEEE. https://doi.org/10.1109/IWBF.2013.6547324
  • Kingma, Diederik & Welling, Max. (2013). Auto-Encoding Variational Bayes. ICLR.
  • Learning Structured Output Representation using Deep Conditional Generative Models, Kihyuk Sohn, Xinchen Yan, Honglak Lee
Owner
Raúl Ortega
Raúl Ortega
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
Python implementation of "Single Image Haze Removal Using Dark Channel Prior"

##Dependencies pillow(~2.6.0) Numpy(~1.9.0) If the scripts throw AttributeError: __float__, make sure your pillow has jpeg support e.g. try: $ sudo ap

Joyee Cheung 73 Dec 20, 2022
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
OpenMMLab Image and Video Editing Toolbox

Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo

OpenMMLab 3.9k Jan 04, 2023