Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Related tags

Deep LearningPGCN
Overview

Graph Convolutional Networks for Temporal Action Localization

This repo holds the codes and models for the PGCN framework presented on ICCV 2019

Graph Convolutional Networks for Temporal Action Localization Runhao Zeng*, Wenbing Huang*, Mingkui Tan, Yu Rong, Peilin Zhao, Junzhou Huang, Chuang Gan, ICCV 2019, Seoul, Korea.

[Paper]

Updates

20/12/2019 We have uploaded the RGB features, trained models and evaluation results! We found that increasing the number of proposals to 800 in the testing further boosts the performance on THUMOS14. We have also updated the proposal list.

04/07/2020 We have uploaded the I3D features on Anet, the training configurations files in data/dataset_cfg.yaml and the proposal lists for Anet.

Contents



Usage Guide

Prerequisites

[back to top]

The training and testing in PGCN is reimplemented in PyTorch for the ease of use.

Other minor Python modules can be installed by running

pip install -r requirements.txt

Code and Data Preparation

[back to top]

Get the code

Clone this repo with git, please remember to use --recursive

git clone --recursive https://github.com/Alvin-Zeng/PGCN

Download Datasets

We support experimenting with two publicly available datasets for temporal action detection: THUMOS14 & ActivityNet v1.3. Here are some steps to download these two datasets.

  • THUMOS14: We need the validation videos for training and testing videos for testing. You can download them from the THUMOS14 challenge website.
  • ActivityNet v1.3: this dataset is provided in the form of YouTube URL list. You can use the official ActivityNet downloader to download videos from the YouTube.

Download Features

Here, we provide the I3D features (RGB+Flow) for training and testing.

THUMOS14: You can download it from Google Cloud or Baidu Cloud.

Anet: You can download the I3D Flow features from Baidu Cloud (password: jbsa) and the I3D RGB features from Google Cloud (Note: set the interval to 16 in ops/I3D_Pooling_Anet.py when training with RGB features)

Download Proposal Lists (ActivityNet)

Here, we provide the proposal lists for ActivityNet 1.3. You can download them from Google Cloud

Training PGCN

[back to top]

Plesse first set the path of features in data/dataset_cfg.yaml

train_ft_path: $PATH_OF_TRAINING_FEATURES
test_ft_path: $PATH_OF_TESTING_FEATURES

Then, you can use the following commands to train PGCN

python pgcn_train.py thumos14 --snapshot_pre $PATH_TO_SAVE_MODEL

After training, there will be a checkpoint file whose name contains the information about dataset and the number of epoch. This checkpoint file contains the trained model weights and can be used for testing.

Testing Trained Models

[back to top]

You can obtain the detection scores by running

sh test.sh TRAINING_CHECKPOINT

Here, TRAINING_CHECKPOINT denotes for the trained model. This script will report the detection performance in terms of mean average precision at different IoU thresholds.

The trained models and evaluation results are put in the "results" folder.

You can obtain the two-stream results on THUMOS14 by running

sh test_two_stream.sh

THUMOS14

[email protected] (%) RGB Flow RGB+Flow
P-GCN (I3D) 37.23 47.42 49.07 (49.64)

#####Here, 49.64% is obtained by setting the combination weights to Flow:RGB=1.2:1 and nms threshold to 0.32

Other Info

[back to top]

Citation

Please cite the following paper if you feel PGCN useful to your research

@inproceedings{PGCN2019ICCV,
  author    = {Runhao Zeng and
               Wenbing Huang and
               Mingkui Tan and
               Yu Rong and
               Peilin Zhao and
               Junzhou Huang and
               Chuang Gan},
  title     = {Graph Convolutional Networks for Temporal Action Localization},
  booktitle   = {ICCV},
  year      = {2019},
}

Contact

For any question, please file an issue or contact

Runhao Zeng: [email protected]
Owner
Runhao Zeng
Runhao Zeng
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022