A dual benchmarking study of visual forgery and visual forensics techniques

Overview

A dual benchmarking study of facial forgery and facial forensics

In recent years, visual forgery has reached a level of sophistication that humans cannot identify fraud, which poses a significant threat to information security. A wide range of malicious applications have emerged, such as fake news, defamation or blackmailing of celebrities, impersonation of politicians in political warfare, and the spreading of rumours to attract views. As a result, a rich body of visual forensic techniques has been proposed in an attempt to stop this dangerous trend. In this paper, we present a benchmark that provides in-depth insights into visual forgery and visual forensics, using a comprehensive and empirical approach. More specifically, we develop an independent framework that integrates state-of-the-arts counterfeit generators and detectors, and measure the performance of these techniques using various criteria. We also perform an exhaustive analysis of the benchmarking results, to determine the characteristics of the methods that serve as a comparative reference in this never-ending war between measures and countermeasures.

Framework

When developing our dual benchmarking analysis of visual forgery and visual forensic techniques, we aimed to provide an extensible framework. To achieve this goal, we used a component-based design to integrate the techniques in a straightforward manner while maintaining their original performance. The below figure depicts the simplified architecture of the framework. The framework contains three layers. The first is a data access layer, which organises the underlying data objects, including the genuine and forged content generated by the visual forgery techniques. The second is a computing layer, which contains four modules: the visual forgery, visual forensics, modulation and evaluation modules. The visual forgery and visual forensics modules include the generation algorithms and forgery detection techniques, respectively. Both of these modules allow the user to easily integrate new algorithms for benchmarking. The modulation module uses a specified configuration to augment the content in order to validate different adverse conditions such as brightness and contrast. The evaluation module assesses the prediction results from the visual forensics module based on various metrics, and delivers statistics and findings to the application layer. Finally, users interact with the framework via the application layer to configure parameters and receive output visualisations.

Dual benchmarking framework.

Enviroment

pip install -r requirement.txt

Preprocess data

Extract fame from video and detect face in frame to save *.jpg image.

python extrac_face.py --inp in/ --output out/ --worker 1 --duration 4

--inp : folder contain video

--output : folder output .jpg image

--worker : number thread extract

--duration : number of frame skip each extract time

Train

Preprocess for GAN-fingerprint

python data_preparation_gan.py in_dir /hdd/tam/df_in_the_wild/image/train --out_dir /hdd/tam/df_in_the_wild/gan/train resolution 128

Preprocess for visual model

python -m feature_model.visual_artifact.process_data --input_real /hdd/tam/df_in_the_wild/image/train/0_real --input_fake /hdd/tam/df_in_the_wild/image/train/1_df --output /hdd/tam/df_in_the_wild/train_visual.pkl --number_iter 1000

Preprocess for headpose model

python -m feature_model.headpose_forensic.process_data --input_real /hdd/tam/df_in_the_wild/image/train/0_real --input_fake /hdd/tam/df_in_the_wild/image/train/1_df --output /hdd/tam/df_in_the_wild/train_visual.pkl --number_iter 1000

Preprocess for spectrum

python -m feature_model.spectrum.process_data --input_real /hdd/tam/df_in_the_wild/image/train/0_real --input_fake /hdd/tam/df_in_the_wild/image/train/1_df --output /hdd/tam/df_in_the_wild/train_spectrum.pkl --number_iter 1000

Train

Train for cnn

python train.py --train_set data/Celeb-DF/image/train/ --val_set data/Celeb-DF/image/test/ --batch_size 32 --image_size 128 --workers 16 --checkpoint xception_128_df_inthewild_checkpoint/ --gpu_id 0 --resume model_pytorch_1.pt --print_every 10000000 xception_torch

Train for feature model

python train.py --train_set /hdd/tam/df_in_the_wild/train_visual.pkl --checkpoint spectrum_128_df_inthewild_checkpoint/ --gpu_id 0 --resume model_pytorch_1.pt spectrum

Eval

Eval for cnn

python eval.py --val_set /hdd/tam/df_in_the_wild/image/test/ --adj_brightness 1.0 --adj_contrast 1.0 --batch_size 32 --image_size 128 --workers 16 --checkpoint efficientdual_128_df_inthewild_checkpoint/ --resume model_dualpytorch3_1.pt efficientdual

python eval.py --val_set /hdd/tam/df_in_the_wild/image/test/ --adj_brightness 1.0 --adj_contrast 1.5 --batch_size 32 --image_size 128 --workers 16 --checkpoint capsule_128_df_inthewild_checkpoint/ --resume 4 capsule

``

Eval for feature model

python eval.py --val_set ../DeepFakeDetection/Experiments_DeepFakeDetection/test_dfinthewild.pkl --checkpoint ../DeepFakeDetection/Experiments_DeepFakeDetection/model_df_inthewild.pkl --resume model_df_inthewild.pkl spectrum

Detect

python detect_img.py --img_path /hdd/tam/extend_data/image/test/1_df/reference_0_113.jpg --model_path efficientdual_mydata_checkpoint/model_dualpytorch3_1.pt --gpu_id 0 efficientdual

python detect_img.py --img_path /hdd/tam/extend_data/image/test/1_df/reference_0_113.jpg --model_path xception_mydata_checkpoint/model_pytorch_0.pt --gpu_id 0 xception_torch

python detect_img.py --img_path /hdd/tam/extend_data/image/test/1_df/reference_0_113.jpg --model_path capsule_mydata_checkpoint/capsule_1.pt --gpu_id 0 capsule

References

[1] https://github.com/nii-yamagishilab/Capsule-Forensics-v2

[2] Nguyen, H. H., Yamagishi, J., & Echizen, I. (2019). Capsule-forensics: Using Capsule Networks to Detect Forged Images and Videos. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019-May, 2307–2311.

[3] https://github.com/PeterWang512/FALdetector

[4] Wang, S.-Y., Wang, O., Owens, A., Zhang, R., & Efros, A. A. (2019). Detecting Photoshopped Faces by Scripting Photoshop.

[5] Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Nießner, M. (2019). FaceForensics++: Learning to Detect Manipulated Facial Images.

[6] Hsu, C.-C., Zhuang, Y.-X., & Lee, C.-Y. (2020). Deep Fake Image Detection Based on Pairwise Learning. Applied Sciences, 10(1), 370.

[7] Afchar, D., Nozick, V., Yamagishi, J., & Echizen, I. (2019). MesoNet: A compact facial video forgery detection network. 10th IEEE International Workshop on Information Forensics and Security, WIFS 2018.

[8] https://github.com/DariusAf/MesoNet

[9] Li, Y., Yang, X., Sun, P., Qi, H., & Lyu, S. (2019). Celeb-DF: A New Dataset for DeepFake Forensics.

[10] https://github.com/deepfakeinthewild/deepfake_in_the_wild

[11] https://www.idiap.ch/dataset/deepfaketimit

[12] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, “Celeb-DF (v2): A new dataset for deepfake forensics,” arXiv preprint arXiv:1909.12962v3, 2018.

[13] Neves, J. C., Tolosana, R., Vera-Rodriguez, R., Lopes, V., & Proença, H. (2019). Real or Fake? Spoofing State-Of-The-Art Face Synthesis Detection Systems. 13(9), 1–8.

[14] https://github.com/danmohaha/DSP-FWA

Owner
Ph.D. in Computer Science and Data Science
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022