Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Overview

Legged Robots that Keep on Learning

Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, which contains code for training a simulated or real A1 quadrupedal robot to imitate various reference motions, pre-trained policies, and example training code for learning the policies.

animated

Project page: https://sites.google.com/berkeley.edu/fine-tuning-locomotion

Getting Started

  • Install MPC extension (Optional) python3 setup.py install --user

Install dependencies:

  • Install MPI: sudo apt install libopenmpi-dev
  • Install requirements: pip3 install -r requirements.txt

Training Policies in Simulation

To train a policy, run the following command:

python3 motion_imitation/run_sac.py \
--mode train \
--motion_file [path to reference motion, e.g., motion_imitation/data/motions/pace.txt] \
--int_save_freq 1000 \
--visualize
  • --mode can be either train or test.
  • --motion_file specifies the reference motion that the robot is to imitate (not needed for training a reset policy). motion_imitation/data/motions/ contains different reference motion clips.
  • --int_save_freq specifies the frequency for saving intermediate policies every n policy steps.
  • --visualize enables visualization, and rendering can be disabled by removing the flag.
  • --train_reset trains a reset policy, otherwise imitation policies will be trained according to the reference motions passed in.
  • adding --use_redq uses REDQ, otherwise vanilla SAC will be used.
  • the trained model, videos, and logs will be written to output/.

Evaluating and/or Fine-Tuning Trained Policies

We provide checkpoints for the pre-trained models used in our experiments in motion_imitation/data/policies/.

Evaluating a Policy in Simulation

To evaluate individual policies, run the following command:

python3 motion_imitation/run_sac.py \
--mode test \
--motion_file [path to reference motion, e.g., motion_imitation/data/motions/pace.txt] \
--model_file [path to imitation model checkpoint, e.g., motion_imitation/data/policies/pace.ckpt] \
--num_test_episodes [# episodes to test] \
--use_redq \
--visualize
  • --motion_file specifies the reference motion that the robot is to imitate motion_imitation/data/motions/ contains different reference motion clips.
  • --model_file specifies specifies the .ckpt file that contains the trained model motion_imitation/data/policies/ contains different pre-trained models.
  • --num_test_episodes specifies the number of episodes to run evaluation for
  • --visualize enables visualization, and rendering can be disabled by removing the flag.

Autonomous Training using a Pre-Trained Reset Controller

To fine-tune policies autonomously, add a path to a trained reset policy (e.g., motion_imitation/data/policies/reset.ckpt) and a (pre-trained) imitation policy.

python3 motion_imitation/run_sac.py \
--mode train \
--motion_file [path to reference motion] \
--model_file [path to imitation model checkpoint] \
--getup_model_file [path to reset model checkpoint] \
--use_redq \
--int_save_freq 100 \
--num_test_episodes 20 \
--finetune \
--real_robot
  • adding --finetune performs fine-tuning, otherwise hyperparameters for pre-training will be used.
  • adding --real_robot will run training on the real A1 (see below to install necessary packages for running the real A1). If this is omitted, training will run in simulation.

To run two SAC trainers, one learning to walk forward and one backward, add a reference and checkpoint for another policy and use the multitask flag.

python motion_imitation/run_sac.py \
--mode train \
--motion_file motion_imitation/data/motions/pace.txt \
--backward_motion_file motion_imitation/data/motions/pace_backward.txt \
--model_file [path to forward imitation model checkpoint] \
--backward_model_file [path to backward imitation model checkpoint] \
--getup_model_file [path to reset model checkpoint] \
--use_redq \
--int_save_freq 100 \
--num_test_episodes 20 \
--real_robot \
--finetune \
--multitask

Running MPC on the real A1 robot

Since the SDK from Unitree is implemented in C++, we find the optimal way of robot interfacing to be via C++-python interface using pybind11.

Step 1: Build and Test the robot interface

To start, build the python interface by running the following: bash cd third_party/unitree_legged_sdk mkdir build cd build cmake .. make Then copy the built robot_interface.XXX.so file to the main directory (where you can see this README.md file).

Step 2: Setup correct permissions for non-sudo user

Since the Unitree SDK requires memory locking and high-priority process, which is not usually granted without sudo, add the following lines to /etc/security/limits.conf:


   
     soft memlock unlimited

    
      hard memlock unlimited

     
       soft nice eip

      
        hard nice eip

      
     
    
   

You may need to reboot the computer for the above changes to get into effect.

Step 3: Test robot interface.

Test the python interfacing by running: 'sudo python3 -m motion_imitation.examples.test_robot_interface'

If the previous steps were completed correctly, the script should finish without throwing any errors.

Note that this code does not do anything on the actual robot.

Running the Whole-body MPC controller

To see the whole-body MPC controller in sim, run: bash python3 -m motion_imitation.examples.whole_body_controller_example

To see the whole-body MPC controller on the real robot, run: bash sudo python3 -m motion_imitation.examples.whole_body_controller_robot_example

Owner
Laura Smith
Laura Smith
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022