Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Overview

Legged Robots that Keep on Learning

Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, which contains code for training a simulated or real A1 quadrupedal robot to imitate various reference motions, pre-trained policies, and example training code for learning the policies.

animated

Project page: https://sites.google.com/berkeley.edu/fine-tuning-locomotion

Getting Started

  • Install MPC extension (Optional) python3 setup.py install --user

Install dependencies:

  • Install MPI: sudo apt install libopenmpi-dev
  • Install requirements: pip3 install -r requirements.txt

Training Policies in Simulation

To train a policy, run the following command:

python3 motion_imitation/run_sac.py \
--mode train \
--motion_file [path to reference motion, e.g., motion_imitation/data/motions/pace.txt] \
--int_save_freq 1000 \
--visualize
  • --mode can be either train or test.
  • --motion_file specifies the reference motion that the robot is to imitate (not needed for training a reset policy). motion_imitation/data/motions/ contains different reference motion clips.
  • --int_save_freq specifies the frequency for saving intermediate policies every n policy steps.
  • --visualize enables visualization, and rendering can be disabled by removing the flag.
  • --train_reset trains a reset policy, otherwise imitation policies will be trained according to the reference motions passed in.
  • adding --use_redq uses REDQ, otherwise vanilla SAC will be used.
  • the trained model, videos, and logs will be written to output/.

Evaluating and/or Fine-Tuning Trained Policies

We provide checkpoints for the pre-trained models used in our experiments in motion_imitation/data/policies/.

Evaluating a Policy in Simulation

To evaluate individual policies, run the following command:

python3 motion_imitation/run_sac.py \
--mode test \
--motion_file [path to reference motion, e.g., motion_imitation/data/motions/pace.txt] \
--model_file [path to imitation model checkpoint, e.g., motion_imitation/data/policies/pace.ckpt] \
--num_test_episodes [# episodes to test] \
--use_redq \
--visualize
  • --motion_file specifies the reference motion that the robot is to imitate motion_imitation/data/motions/ contains different reference motion clips.
  • --model_file specifies specifies the .ckpt file that contains the trained model motion_imitation/data/policies/ contains different pre-trained models.
  • --num_test_episodes specifies the number of episodes to run evaluation for
  • --visualize enables visualization, and rendering can be disabled by removing the flag.

Autonomous Training using a Pre-Trained Reset Controller

To fine-tune policies autonomously, add a path to a trained reset policy (e.g., motion_imitation/data/policies/reset.ckpt) and a (pre-trained) imitation policy.

python3 motion_imitation/run_sac.py \
--mode train \
--motion_file [path to reference motion] \
--model_file [path to imitation model checkpoint] \
--getup_model_file [path to reset model checkpoint] \
--use_redq \
--int_save_freq 100 \
--num_test_episodes 20 \
--finetune \
--real_robot
  • adding --finetune performs fine-tuning, otherwise hyperparameters for pre-training will be used.
  • adding --real_robot will run training on the real A1 (see below to install necessary packages for running the real A1). If this is omitted, training will run in simulation.

To run two SAC trainers, one learning to walk forward and one backward, add a reference and checkpoint for another policy and use the multitask flag.

python motion_imitation/run_sac.py \
--mode train \
--motion_file motion_imitation/data/motions/pace.txt \
--backward_motion_file motion_imitation/data/motions/pace_backward.txt \
--model_file [path to forward imitation model checkpoint] \
--backward_model_file [path to backward imitation model checkpoint] \
--getup_model_file [path to reset model checkpoint] \
--use_redq \
--int_save_freq 100 \
--num_test_episodes 20 \
--real_robot \
--finetune \
--multitask

Running MPC on the real A1 robot

Since the SDK from Unitree is implemented in C++, we find the optimal way of robot interfacing to be via C++-python interface using pybind11.

Step 1: Build and Test the robot interface

To start, build the python interface by running the following: bash cd third_party/unitree_legged_sdk mkdir build cd build cmake .. make Then copy the built robot_interface.XXX.so file to the main directory (where you can see this README.md file).

Step 2: Setup correct permissions for non-sudo user

Since the Unitree SDK requires memory locking and high-priority process, which is not usually granted without sudo, add the following lines to /etc/security/limits.conf:


   
     soft memlock unlimited

    
      hard memlock unlimited

     
       soft nice eip

      
        hard nice eip

      
     
    
   

You may need to reboot the computer for the above changes to get into effect.

Step 3: Test robot interface.

Test the python interfacing by running: 'sudo python3 -m motion_imitation.examples.test_robot_interface'

If the previous steps were completed correctly, the script should finish without throwing any errors.

Note that this code does not do anything on the actual robot.

Running the Whole-body MPC controller

To see the whole-body MPC controller in sim, run: bash python3 -m motion_imitation.examples.whole_body_controller_example

To see the whole-body MPC controller on the real robot, run: bash sudo python3 -m motion_imitation.examples.whole_body_controller_robot_example

Owner
Laura Smith
Laura Smith
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
Xi Dongbo 78 Nov 29, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Marshall Wace 6 Nov 07, 2022
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022