Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

Overview

yolox-bytetrack-sample

YOLOXByteTrackを用いたMOT(Multiple Object Tracking)のPythonサンプルです。
YOLOXはYOLOX-ONNX-TFLite-Sampleで、ONNXに変換したモデルを使用しています。

08-01.yolox-bytetrack.mp4

Requirement

  • OpenCV 3.4.2 or later
  • onnxruntime 1.5.2 or later
  • cython_bbox 0.1.3 or later

※onnxruntime-gpuはonnxruntimeでも動作しますが、推論時間がかかるためGPUを推奨します
※Windowsでcython_bbox のインストールが失敗する場合は、GitHubからのインストールをお試しください(2022/02/13時点)

pip install -e git+https://github.com/samson-wang/cython_bbox.git#egg=cython-bbox

Demo

デモの実行方法は以下です。

python sample.py
  • --device
    カメラデバイス番号の指定
    デフォルト:0
  • --movie
    動画ファイルの指定 ※指定時はカメラデバイスより優先
    デフォルト:指定なし
  • --width
    カメラキャプチャ時の横幅
    デフォルト:960
  • --height
    カメラキャプチャ時の縦幅
    デフォルト:540
YOLOXパラメータ
  • --yolox_model
    ロードするモデルの格納パス
    デフォルト:model/yolox_nano.onnx
  • --input_shape
    モデルの入力サイズ
    デフォルト:416,416
  • --score_th
    クラス判別の閾値
    デフォルト:0.3
  • --nms_th
    NMSの閾値
    デフォルト:0.45
  • --nms_score_th
    NMSのスコア閾値
    デフォルト:0.1
  • --with_p6
    Large P6モデルを使用するか否か
    デフォルト:指定なし
ByteTrackパラメータ
  • --track_thresh
    デフォルト:0.5
  • --track_buffer
    デフォルト:30
  • --match_thresh
    デフォルト:0.8
  • --min_box_area
    デフォルト:10
  • --mot20
    デフォルト:指定なし

※パラメータ詳細はByteTrackを参照ください。

Reference

Author

高橋かずひと(https://twitter.com/KzhtTkhs)

License

yolox-bytetrack-sample is under MIT License.

License(Movie)

サンプル動画はNHKクリエイティブ・ライブラリーケニア共和国キツイ 町並み(4) ふかんショットを使用しています。

Owner
KazuhitoTakahashi
KazuhitoTakahashi
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021