[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Related tags

Deep LearningDePT
Overview

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems

Introduction

Multi-agent control is a central theme in the Cyber-Physical Systems (CPS). However, current control methods either receive non-Markovian states due to insufficient sensing and decentralized design, or suffer from poor convergence. This paper presents the Delayed Propagation Transformer (DePT), a new transformer-based model that specializes in the global modeling of CPS while taking into account the immutable constraints from the physical world. DePT induces a cone-shaped spatial-temporal attention prior, which injects the information propagation and aggregation principles and enables a global view. With physical constraint inductive bias baked into its design, our DePT is ready to plug and play for a broad class of multi-agent systems. The experimental results on one of the most challenging CPS -- network-scale traffic signal control system in the open world -- demonstrated the superior performance of DePT on synthetic and real-world datasets.

Method

flow

scenario

tu

Installation Guide

The RL training loop of this repo is inherited from Colight repo: https://github.com/wingsweihua/colight

First, create new environment

This step is optional. CoLight (teacher model for DePT with imitation learning) requires tensorflow==1.x.

conda create -y -n 
   
     python=3.6
conda activate 
    

    
   

Then, install cityflow

Follow the [Official installation guide]

Or optionally, use the following commands without docker (docker is recommended but not mandatory)

git clone https://github.com/cityflow-project/CityFlow.git
cd CityFlow
pip install .

To test if you have successfully installed cityflow, check if the following python codes can pass without error:

import cityflow
eng = cityflow.Engine

Then, install requirements for teacher Colight

The RL training loop of DePT is based on Colight, they share the same dependencies. A complete environment that passed the test is provided in DePT/requirements.txt.

Training Guide

First, train teacher Colight:

set use_DePT = False in DePT/config.py, then run main.py

Second, pre-fit attention prior

Initialize model and pre-fit the priors using /DePT/DePT_src/pretrain_decayer.py

If downgrading DePT to transformer and not using the spatial tempooral cone shaped prior, skip this step.

Before training, keep track of the following configurations for training DePT:

If training a colight teacher model, set use_DePT = False in DePT/config.py: DIC_COLIGHT_AGENT_CONF. If training the DePT model, set it to False.

If enabling the spatial temporal cone shaped prior (default is enabled), set the following in DePT/model.py.

ablation1_cone = False
ablation2_time = False
only_1cone = False

If using Colight as the teacher model, set which_teacher='colight' in DePT/DePT_src/model.py, and set colight_fname to the pre-trained Colight teacher .h5 file.

Train DePT:

Example commands
python main.py 

python main.py --cnt 3600  --rounds 100  --gen 4  

python main.py --cnt 3600  --rounds 100  --gen 5  --volume='newyork' --road_net='28_7' --suffix='real_triple'

parameter meaning:

--rounds will specify the number of rounds generated, each round is 1 hour simulation time; 100 rounds are recommended.

--gen will specify number of generators; all generators work in parallel. 1 to 5 are recommended.

Simulation Platform that passed the test:

Ubuntu 20.04.2

RTX A6000

Driver Version: 460.91.03 CUDA Version: 11.2

Optional step before training:

Delete the following dirs (Automatically generated files) won't cause error in training, except losing your redundant training histories.

rm -rf model 
rm -rf records

Citation

comming soon.
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022