Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

Overview

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints".

Edit 2021/8/30: KKT-based (Decision-focused) baseline is added to the first experiment.

Requirements

pytorch>=1.7.0

scipy

gurobipy (and Gurobi>=9.1 license - you can get Academic license for free at https://www.gurobi.com/downloads/end-user-license-agreement-academic/; download and install Gurobi first.)

Quandl

h5py

bs4

tqdm

sklearn

pandas

lxml

qpth

cvxpy

cvxpylayers

Running Experiments

You should be able to run all experiments by fulfilling the requirements and cloning this repo to your local machine.

Synthetic Linear Programming

The dataset for this problem is generated at runtime. To run a single problem instance, type the following command:

python run_main_synth.py --method=2 --dim_context=40 --dim_hard=40 --dim_soft=20 --seed=2006 --dim_features=80 --loss=l1 --K=0.2

The four methods (L1,L2,SPO+,ours) we used in the experiment are respectively

--method=0 --loss=l1 # L1
--method=0 --loss=l2 # L2
--method=1 --loss=l1 # SPO+
--method=2 --loss=l1 # ours
--method=3 --loss=l1 # decision-focused (KKT-based)

The other parameters can be seen in run_script.py and run_main_synth.py. To get multiple data for a single method, modify with the parameters listed above, and then run run_script.py. The outcome containing prediction error and regret is in the result folder. See dataprocess.py for a reference on how to interpret the data; the data with suffix "...test.txt" is used for evaluation. Also, to change batch size and training set size, alter the default parameters in run_main_synth.py.

Portfolio Optimization

The dataset for this problem will be automatically downloaded when you first run this code, as Wilder et al.'s code does[1]. It is the daily price data of SP500 from 2004 to 2017 downloaded by Quandl API. To run a single problem instance, type the following command:

python main.py --method=3 --n=50 --seed=471298479

The four methods (L1, DF, L2, ours) are labeled as method 0, 1, 2 and 3. To get multiple data for a single method, run run_script.py.

The result is in the res/K100 folder.

Resource Provisioning

The dataset of this problem is attached in the github repository, which are the eight csv file, one for each region. It is the ERCOT dataset taken from (...to be filled...), and is processed by resource_provisioning/data_energy/data_loader.py at runtime. When you first run this code, it will generate several large .npy file as the cached feature, which will accelerate the preprocessing of the following runs. This experiment requires large memory and is recommended to run on a server. To run a single problem instance, type the following command:

python run_main_newnet.py --method=1 --seed=16900000 --loss=l1

The four methods (L1, L2, weighted L1, ours) are respectively

--method=0 --loss=l1 # L1
--method=0 --loss=l2 # L2
--method=0 --loss=l3 # weighted L1
--method=1 --loss=l1 # ours

To run different ratio of alpha1/alpha2, modify line 157-158 in synthesize.py

 alpha1 = torch.ones(dim_context, 1) * 50
 alpha2 = torch.ones(dim_context, 1) * 0.5

to a desired ratio. Furthermore, modify line 174 in main_newnet.py

netname = "50to0.5"

to "5to0.5"/"1to1"/"0.5to5"/"0.5to50", and line 199 in main_newnet.py

self.alpha1, self.alpha2 = 0.5, 50

to (0.5, 5)/(1, 1)/(5, 0.5)/(50, 0.5) respectively.

run run_script.py to get multiple data. The result is in the result/2013to18_+str(netname)+newnet folder. The interpretation of output data is similar to synthetic linear programming.

[1] Automatically Learning Compact Quality-aware Surrogates for Optimization Problems, Wilder et al., 2020 (https://arxiv.org/abs/2006.10815)

Empirical Evaluation of Lambda_max in Theorem 6

run test.py directly to get results (note it takes a long time to finish the whole run, especially for the option of beta distribution). The results for uniform, Gaussian and beta are respectively in test1.txt, test2.txt and test3.txt.

The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Google Research 36 Aug 26, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022