It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

Overview

CLIP-ONNX

It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

Usage

Install clip-onnx module and requirements first. Use this trick

!pip install git+https://github.com/Lednik7/CLIP-ONNX.git

Example in 3 steps

  1. Download CLIP image from repo
!wget -c -O CLIP.png https://github.com/openai/CLIP/blob/main/CLIP.png?raw=true
  1. Load standard CLIP model, image, text on cpu
import clip
from PIL import Image

# onnx cannot work with cuda
model, preprocess = clip.load("ViT-B/32", device="cpu", jit=False)
# batch first
image = preprocess(Image.open("CLIP.png")).unsqueeze(0) # [1, 3, 224, 224]
text = clip.tokenize(["a diagram", "a dog", "a cat"]) # [3, 77]
  1. Create CLIP-ONNX object to convert model to onnx
from clip_onnx import clip_onnx, attention
clip.model.ResidualAttentionBlock.attention = attention

visual_path = "clip_visual.onnx"
textual_path = "clip_textual.onnx"

# ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']
onnx_model = clip_onnx(model, providers=["CPUExecutionProvider"], # cpu mode
                       visual_path=visual_path, textual_path=textual_path)
onnx_model.convert2onnx(image, text, verbose=True)
onnx_model.start_sessions()
  1. Use for standard CLIP API. Batch inference
image_features = onnx_model.encode_image(image)
text_features = onnx_model.encode_text(text)

logits_per_image, logits_per_text = onnx_model(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs)  # prints: [[0.41456965 0.29270944 0.29272085]]

Enjoy the speed

Examples

See examples folder for more details
Some parts of the code were taken from the post. Thank you neverix for this notebook.

Comments
  • Can't use CUDAExecutionProvider

    Can't use CUDAExecutionProvider

    Hey, I'm trying to use the code on GPU and I encountered 2 problems:

    1. when running pip install git+https://github.com/Lednik7/CLIP-ONNX.git I got the following error (tried on multiple machines): ERROR: Could not find a version that satisfies the requirement torch==1.10.0+cu111 (from clip-onnx)

    I fixed it by installing that version of torch by myself. with pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html, and then running the rest of the installation.

    1. After I installed the package, I tried to run the example in the readme with CPUExecutionProvider and it worked fine, but when I'm trying to run it on GPU with CUDAExecutionProvider I get the following error message (again on different machines):

    2022-01-31 20:57:03.234399301 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met. 2022-01-31 20:57:03.872349008 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met.

    I can't figure out what is the problem. Any help?

    opened by YoadTew 13
  • Performance is inconsistent with the original model

    Performance is inconsistent with the original model

    Hi, thanks for providing this useful tool! However, I found that the result produced by the generated ONNX model is inconsistent with the original CLIP model. Here is the code I used to test the original model:

    model, preprocess = clip.load("ViT-B/32", device="cpu", jit=False)
    
    image = preprocess(Image.open("CLIP.png")).unsqueeze(0).cpu() # [1, 3, 224, 224]
    text = clip.tokenize(["a diagram", "a dog", "a cat"]).cpu() # [3, 77]
    
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    
    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).detach().cpu().numpy()
    
    print("Label probs:", probs) 
    

    The result is: Label probs: [[0.9927937 0.00421069 0.00299573]]

    However, when using the onnx model, the result is: Label probs: [[0.41456965 0.29270944 0.29272085]].

    Could you help me with this? Thanks!

    opened by Cestlaviez 5
  • Error on installing the torch version in requirements.txt

    Error on installing the torch version in requirements.txt

    pip install git+https://github.com/Lednik7/CLIP-ONNX.git

    ERROR: Could not find a version that satisfies the requirement torch==1.11.0+cu113 (from versions: 1.0.0, 1.0.1, 1.0.1.post2, 1.1.0, 1.2.0, 1.3.0, 1.3.1, 1.4.0, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.8.1, 1.9.0, 1.9.1, 1.10.0, 1.10.1, 1.10.2, 1.11.0)
    ERROR: No matching distribution found for torch==1.11.0+cu113
    

    python version is 3.7.13

    opened by dingusagar 2
  • ERROR: No matching distribution found for onnxruntime==1.11

    ERROR: No matching distribution found for onnxruntime==1.11

    Hi, Thanks for the great work!

    I am having this error when I try to install the package.

    ERROR: No matching distribution found for onnxruntime==1.11

    Maybe we can update the requirements.txt?

    opened by wanliAlex 1
  • Replace the operator of

    Replace the operator of "torch.einsum"

    q, k, v = (torch.einsum("tbh, oh -> tbo", x, self.attn.in_proj_weight) + self.attn.in_proj_bias).contiguous().chunk( 3, dim=-1)

    @Lednik7 Thanks for your great work on Clip-ONNX. for the pytorch operator of "torch.einsum" , if we don't want to use this operator , do you have other codes to replace this operator? this operator is not friendly to some Inference engine, like NV TensorRT, so if you have other codes to replace einsum, that will be better

    opened by zhangnju 2
Owner
Gerasimov Maxim
16 y.o. Data Scientist. Graduated by Yandex Lyceum and Tinkoff Education
Gerasimov Maxim
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022