Several simple examples for popular neural network toolkits calling custom CUDA operators.

Overview

Neural Network CUDA Example

logo

Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators.

We provide several ways to compile the CUDA kernels and their cpp wrappers, including jit, setuptools and cmake.

We also provide several python codes to call the CUDA kernels, including kernel time statistics and model training.

For more accurate time statistics, you'd best use nvprof or nsys to run the code.

Environments

  • NVIDIA Driver: 418.116.00
  • CUDA: 11.0
  • Python: 3.7.3
  • PyTorch: 1.7.0+cu110
  • TensorFlow: 2.4.1
  • CMake: 3.16.3
  • Ninja: 1.10.0
  • GCC: 8.3.0

Cannot ensure successful running in other environments.

Code structure

├── include
│   └── add2.h # header file of add2 cuda kernel
├── kernel
│   └── add2_kernel.cu # add2 cuda kernel
├── pytorch
│   ├── add2_ops.cpp # torch wrapper of add2 cuda kernel
│   ├── time.py # time comparison of cuda kernel and torch
│   ├── train.py # training using custom cuda kernel
│   ├── setup.py
│   └── CMakeLists.txt
├── tensorflow
│   ├── add2_ops.cpp # tensorflow wrapper of add2 cuda kernel
│   ├── time.py # time comparison of cuda kernel and tensorflow
│   ├── train.py # training using custom cuda kernel
│   └── CMakeLists.txt
├── LICENSE
└── README.md

PyTorch

Compile cpp and cuda

JIT
Directly run the python code.

Setuptools

python3 pytorch/setup.py install

CMake

mkdir build
cd build
cmake ../pytorch
make

Run python

Compare kernel running time

python3 pytorch/time.py --compiler jit
python3 pytorch/time.py --compiler setup
python3 pytorch/time.py --compiler cmake

Train model

python3 pytorch/train.py --compiler jit
python3 pytorch/train.py --compiler setup
python3 pytorch/train.py --compiler cmake

TensorFlow

Compile cpp and cuda

CMake

mkdir build
cd build
cmake ../tensorflow
make

Run python

Compare kernel running time

python3 tensorflow/time.py --compiler cmake

Train model

python3 tensorflow/train.py --compiler cmake

Implementation details (in Chinese)

PyTorch自定义CUDA算子教程与运行时间分析
详解PyTorch编译并调用自定义CUDA算子的三种方式
三分钟教你如何PyTorch自定义反向传播

F.A.Q

Q. ImportError: libc10.so: cannot open shared object file: No such file or directory

A. You must do import torch before import add2.

Owner
WeiYang
微信公众号「算法码上来」 / ByteDance AI Lab / East China Normal University
WeiYang
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023