Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Overview

Gradient Centralization TensorFlow Twitter

PyPI Upload Python Package Flake8 Lint Python Version

Binder Open In Colab

GitHub license PEP8 GitHub stars GitHub forks GitHub watchers

This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique for Deep Neural Networks as suggested by Yong et al. in the paper Gradient Centralization: A New Optimization Technique for Deep Neural Networks. It can both speedup training process and improve the final generalization performance of DNNs.

Installation

Run the following to install:

pip install gradient-centralization-tf

Usage

gctf.centralized_gradients_for_optimizer

Create a centralized gradients functions for a specified optimizer.

Arguments:

  • optimizer: a tf.keras.optimizers.Optimizer object. The optimizer you are using.

Example:

>>> opt = tf.keras.optimizers.Adam(learning_rate=0.1)
>>> optimizer.get_gradients = gctf.centralized_gradients_for_optimizer(opt)
>>> model.compile(optimizer = opt, ...)

gctf.get_centralized_gradients

Computes the centralized gradients.

This function is ideally not meant to be used directly unless you are building a custom optimizer, in which case you could point get_gradients to this function. This is a modified version of tf.keras.optimizers.Optimizer.get_gradients.

Arguments:

  • optimizer: a tf.keras.optimizers.Optimizer object. The optimizer you are using.
  • loss: Scalar tensor to minimize.
  • params: List of variables.

Returns:

A gradients tensor.

gctf.optimizers

Pre built updated optimizers implementing GC.

This module is speciially built for testing out GC and in most cases you would be using gctf.centralized_gradients_for_optimizer though this module implements gctf.centralized_gradients_for_optimizer. You can directly use all optimizers with tf.keras.optimizers updated for GC.

Example:

>>> model.compile(optimizer = gctf.optimizers.adam(learning_rate = 0.01), ...)
>>> model.compile(optimizer = gctf.optimizers.rmsprop(learning_rate = 0.01, rho = 0.91), ...)
>>> model.compile(optimizer = gctf.optimizers.sgd(), ...)

Returns:

A tf.keras.optimizers.Optimizer object.

Developing gctf

To install gradient-centralization-tf, along with tools you need to develop and test, run the following in your virtualenv:

git clone [email protected]:Rishit-dagli/Gradient-Centralization-TensorFlow
# or clone your own fork

pip install -e .[dev]

License

Copyright 2020 Rishit Dagli

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Comments
  • On windows Tensorflow 2.5 it gives error

    On windows Tensorflow 2.5 it gives error

    On windows 10 with miniconda enviroment tensorflow 2.5 gives error on centralized_gradients.py file.

    the solution is change import keras.backend as K with import tensorflow.keras.backend as K

    bug 
    opened by mgezer 5
  • The results in the mnist example are wrong/misleading

    The results in the mnist example are wrong/misleading

    Describe the bug The results in your colab ipython notebook are misleading: https://colab.research.google.com/github/Rishit-dagli/Gradient-Centralization-TensorFlow/blob/main/examples/gctf_mnist.ipynb

    In this example, the model is first trained with a normal Adam optimizer:

    model.compile(optimizer = tf.keras.optimizers.Adam(),
                  loss = 'sparse_categorical_crossentropy',
                  metrics = ['accuracy'])
    
    history_no_gctf = model.fit(training_images, training_labels, epochs=5, callbacks = [time_callback_no_gctf])
    

    And afterwards the same model is recompiled with the gctf.optimizers.adam(). However, recompiling a keras model does not reset the weights. This means that in the first fit call the model is trained and then in the second fit call with the new optimizer the same model is used and of course then the results are better.

    This can be fixed, by recreating the model for the second run, by just adding these few lines:

    import gctf #import gctf
    
    time_callback_gctf = TimeHistory()
    
    # Model architecture
    model = tf.keras.models.Sequential([
                                        tf.keras.layers.Flatten(), 
                                        tf.keras.layers.Dense(512, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(256, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(64, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(512, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(256, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(64, activation=tf.nn.relu), 
                                        tf.keras.layers.Dense(10, activation=tf.nn.softmax)])
    
    model.compile(optimizer = gctf.optimizers.adam(),
                  loss = 'sparse_categorical_crossentropy',
                  metrics=['accuracy'])
    
    history_gctf = model.fit(training_images, training_labels, epochs=5, callbacks=[time_callback_gctf])
    

    However, then the results are not better than without gctf:

    Type                   Execution time    Accuracy      Loss
    -------------------  ----------------  ----------  --------
    Model without gctf:           24.7659    0.88825   0.305801
    Model with gctf               24.7881    0.889567  0.30812
    

    Could you please clarify what happens here. I tried this gctf.optimizers.adam() optimizer in my own research and it didn't change the results at all and now after seeing it doesn't work in the example which was constructed here. Makes me question the results of this paper.

    To Reproduce Execute the colab file given in the repository: https://colab.research.google.com/github/Rishit-dagli/Gradient-Centralization-TensorFlow/blob/main/examples/gctf_mnist.ipynb

    Expected behavior The right comparison would be if both models start from a random initialization, not that the second model can start with the already pre-trained weights.

    Looking forward to a fast a swift explanation.

    Best, Max

    question 
    opened by themasterlink 2
  • Wider dependency requirements

    Wider dependency requirements

    The package as of now to be installed requires tensorflow ~= 2.4.0 and keras ~= 2.4.0. It turns out that this is sometimes problematic for folks who have custom installations of TensorFlow and a winder requirement could be set up.

    enhancement 
    opened by Rishit-dagli 1
  • Release 0.0.3

    Release 0.0.3

    This release includes some fixes and improvements

    โœ… Bug Fixes / Improvements

    • Allow wider versions for TensorFlow and Keras while installing the package (#14 )
    • Fixed incorrect usage example in docstrings and description for centralized_gradients_for_optimizer (#13 )
    • Add clear aims for each of the examples of using gctf (#15 )
    • Updates PyPi classifiers to clearly show the aims of this project. This should have no changes in the way you use this package (#18 )
    • Add clear instructions for using this with custom optimizers i.e. directly use get_centralized_gradients however a complete example has not been pushed due to the reasons mentioned in the issue (#16 )
    opened by Rishit-dagli 0
  • Add an

    Add an "About The Examples" section

    Add an "About The Examples" section which contains a summary of the usage example notebooks and links to run it on Binder and Colab.


    Close #15

    opened by Rishit-dagli 0
  • Update relevant pypi classifiers

    Update relevant pypi classifiers

    Add PyPI classifiers for:

    • Development status
    • Intended Audience
    • Topic

    Further also added the Programming Language :: Python :: 3 :: Only classifer


    Closes #18

    opened by Rishit-dagli 0
  • Update pypi classifiers

    Update pypi classifiers

    I am specifically thinking of adding three more categories of pypi classifiers:

    • Development status
    • Intended Audience
    • Topic

    Apart from this I also think it would be great to add the Programming Language :: Python :: 3 :: Only to make sure the audience to know that this package is intended for Python 3 only.

    opened by Rishit-dagli 0
  • Add an

    Add an "About the examples" section

    It would be great to write an "About the example" section which could demonstrate in short what the example notebooks aim to achieve and show.

    documentation 
    opened by Rishit-dagli 0
  • Error in usage example for gctf.centralized_gradients_for_optimizer

    Error in usage example for gctf.centralized_gradients_for_optimizer

    I noticed that the docstrings for gctf.centralized_gradients_for_optimizer have an error in the example usage section. The example creates an Adam optimizer instance and saves it to opt however the centralized_gradients_for_optimizer is applied on optimizer which ideally does not exist and running the example would result in an error.

    documentation 
    opened by Rishit-dagli 0
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    opened by imgbot[bot] 0
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    opened by imgbot[bot] 0
Releases(v0.0.3)
  • v0.0.3(Mar 11, 2021)

    This release includes some fixes and improvements

    โœ… Bug Fixes / Improvements

    • Allow wider versions for TensorFlow and Keras while installing the package (#14 )
    • Fixed incorrect usage example in docstrings and description for centralized_gradients_for_optimizer (#13 )
    • Add clear aims for each of the examples of using gctf (#15 )
    • Updates PyPi classifiers to clearly show the aims of this project. This should have no changes in the way you use this package (#18 )
    • Add clear instructions for using this with custom optimizers i.e. directly use get_centralized_gradients however a complete example has not been pushed due to the reasons mentioned in the issue (#16 )
    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Feb 21, 2021)

    This release includes some fixes and improvements

    โœ… Bug Fixes / Improvements

    • Fix the issue of supporting multiple modules
    • Fix multiple typos.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Feb 20, 2021)

Owner
Rishit Dagli
High School, Ted-X, Ted-Ed speaker|Mentor, TFUG Mumbai|International Speaker|Microsoft Student Ambassador|#ExploreML Facilitator
Rishit Dagli
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 ๅฎ‰ๅ…จAIๆŒ‘ๆˆ˜่€…่ฎกๅˆ’็ฌฌๅ…ญๆœŸ๏ผšImageNetๆ— ้™ๅˆถๅฏนๆŠ—ๆ”ปๅ‡ป ๅ†ณ่ต›็ฌฌๅ››ๅ๏ผˆteam name: Advers๏ผ‰

51 Dec 01, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
3 Apr 20, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
IEGAN โ€” Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN โ€” Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023