Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

Overview

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition

[ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

and

SeqNetVLAD vs PointNetVLAD: Image Sequence vs 3D Point Clouds for Day-Night Place Recognition

[ArXiv] [CVPR 2021 Workshop 3DVR]


Sequence-Based Hierarchical Visual Place Recognition.

News:

Jun 23: CVPR 2021 Workshop 3DVR paper, "SeqNetVLAD vs PointNetVLAD", now available on arXiv. Oxford dataset to be released soon.

Jun 02: SeqNet code release with the Nordland dataset.

Setup (One time)

Conda

conda create -n seqnet python=3.8 mamba -c conda-forge -y
conda activate seqnet
mamba install numpy pytorch=1.8.0 torchvision tqdm scikit-learn faiss tensorboardx h5py -c conda-forge -y

Download

Run bash download.sh to download single image NetVLAD descriptors (3.4 GB) for the Nordland-clean dataset [a] and corresponding model files (1.5 GB) [b].

Run

Train

To train sequential descriptors through SeqNet:

python main.py --mode train --pooling seqnet --dataset nordland-sw --seqL 10 --w 5 --outDims 4096 --expName "w5"

To (re-)train single descriptors through SeqNet:

python main.py --mode train --pooling seqnet --dataset nordland-sw --seqL 1 --w 1 --outDims 4096 --expName "w1"

Test

python main.py --mode test --pooling seqnet --dataset nordland-sf --seqL 5 --split test --resume ./data/runs/Jun03_15-22-44_l10_w5/ 

The above will reproduce results for SeqNet (S5) as per Supp. Table III on Page 10.

To obtain other results from the same table, expand this.
# Raw Single (NetVLAD) Descriptor
python main.py --mode test --pooling single --dataset nordland-sf --seqL 1 --split test

# SeqNet (S1)
python main.py --mode test --pooling seqnet --dataset nordland-sf --seqL 1 --split test --resume ./data/runs/Jun03_15-07-46_l1_w1/

# Raw + Smoothing
python main.py --mode test --pooling smooth --dataset nordland-sf --seqL 5 --split test

# Raw + Delta
python main.py --mode test --pooling delta --dataset nordland-sf --seqL 5 --split test

# Raw + SeqMatch
python main.py --mode test --pooling single+seqmatch --dataset nordland-sf --seqL 5 --split test

# SeqNet (S1) + SeqMatch
python main.py --mode test --pooling s1+seqmatch --dataset nordland-sf --seqL 5 --split test --resume ./data/runs/Jun03_15-07-46_l1_w1/

# HVPR (S5 to S1)
# Run S5 first and save its predictions by specifying `resultsPath`
python main.py --mode test --pooling seqnet --dataset nordland-sf --seqL 5 --split test --resume ./data/runs/Jun03_15-22-44_l10_w5/ --resultsPath ./data/results/
# Now run S1 + SeqMatch using results from above (the timestamp of `predictionsFile` would be different in your case)
python main.py --mode test --pooling s1+seqmatch --dataset nordland-sf --seqL 5 --split test --resume ./data/runs/Jun03_15-07-46_l1_w1/ --predictionsFile ./data/results/Jun03_16-07-36_l5_0.npz

Acknowledgement

The code in this repository is based on Nanne/pytorch-NetVlad. Thanks to Tobias Fischer for his contributions to this code during the development of our project QVPR/Patch-NetVLAD.

Citation

@article{garg2021seqnet,
  title={SeqNet: Learning Descriptors for Sequence-based Hierarchical Place Recognition},
  author={Garg, Sourav and Milford, Michael},
  journal={IEEE Robotics and Automation Letters},
  volume={6},
  number={3},
  pages={4305-4312},
  year={2021},
  publisher={IEEE},
  doi={10.1109/LRA.2021.3067633}
}

@misc{garg2021seqnetvlad,
  title={SeqNetVLAD vs PointNetVLAD: Image Sequence vs 3D Point Clouds for Day-Night Place Recognition},
  author={Garg, Sourav and Milford, Michael},
  howpublished={CVPR 2021 Workshop on 3D Vision and Robotics (3DVR)},
  month={Jun},
  year={2021},
}

Other Related Projects

Patch-NetVLAD (2021); Delta Descriptors (2020); CoarseHash (2020); seq2single (2019); LoST (2018)

[a] This is the clean version of the dataset that excludes images from the tunnels and red lights, exact image names can be obtained from here.

[b] These will automatically save to ./data/, you can modify this path in download.sh and get_datasets.py to specify your workdir.

Owner
Sourav Garg
Sourav Garg
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022