Deformable DETR is an efficient and fast-converging end-to-end object detector.

Overview

Deformable DETR

By Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.

This repository is an official implementation of the paper Deformable DETR: Deformable Transformers for End-to-End Object Detection.

Introduction

TL; DR. Deformable DETR is an efficient and fast-converging end-to-end object detector. It mitigates the high complexity and slow convergence issues of DETR via a novel sampling-based efficient attention mechanism.

deformable_detr

deformable_detr

Abstract. DETR has been recently proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance. However, it suffers from slow convergence and limited feature spatial resolution, due to the limitation of Transformer attention modules in processing image feature maps. To mitigate these issues, we proposed Deformable DETR, whose attention modules only attend to a small set of key sampling points around a reference. Deformable DETR can achieve better performance than DETR (especially on small objects) with 10× less training epochs. Extensive experiments on the COCO benchmark demonstrate the effectiveness of our approach.

License

This project is released under the Apache 2.0 license.

Changelog

See changelog.md for detailed logs of major changes.

Citing Deformable DETR

If you find Deformable DETR useful in your research, please consider citing:

@article{zhu2020deformable,
  title={Deformable DETR: Deformable Transformers for End-to-End Object Detection},
  author={Zhu, Xizhou and Su, Weijie and Lu, Lewei and Li, Bin and Wang, Xiaogang and Dai, Jifeng},
  journal={arXiv preprint arXiv:2010.04159},
  year={2020}
}

Main Results

Method Epochs AP APS APM APL params
(M)
FLOPs
(G)
Total
Train
Time
(GPU
hours)
Train
Speed
(GPU
hours
/epoch)
Infer
Speed
(FPS)
Batch
Infer
Speed
(FPS)
URL
Faster R-CNN + FPN 109 42.0 26.6 45.4 53.4 42 180 380 3.5 25.6 28.0 -
DETR 500 42.0 20.5 45.8 61.1 41 86 2000 4.0 27.0 38.3 -
DETR-DC5 500 43.3 22.5 47.3 61.1 41 187 7000 14.0 11.4 12.4 -
DETR-DC5 50 35.3 15.2 37.5 53.6 41 187 700 14.0 11.4 12.4 -
DETR-DC5+ 50 36.2 16.3 39.2 53.9 41 187 700 14.0 11.4 12.4 -
Deformable DETR
(single scale)
50 39.4 20.6 43.0 55.5 34 78 160 3.2 27.0 42.4 config
log
model
Deformable DETR
(single scale, DC5)
50 41.5 24.1 45.3 56.0 34 128 215 4.3 22.1 29.4 config
log
model
Deformable DETR 50 44.5 27.1 47.6 59.6 40 173 325 6.5 15.0 19.4 config
log
model
+ iterative bounding box refinement 50 46.2 28.3 49.2 61.5 41 173 325 6.5 15.0 19.4 config
log
model
++ two-stage Deformable DETR 50 46.9 29.6 50.1 61.6 41 173 340 6.8 14.5 18.8 config
log
model

Note:

  1. All models of Deformable DETR are trained with total batch size of 32.
  2. Training and inference speed are measured on NVIDIA Tesla V100 GPU.
  3. "Deformable DETR (single scale)" means only using res5 feature map (of stride 32) as input feature maps for Deformable Transformer Encoder.
  4. "DC5" means removing the stride in C5 stage of ResNet and add a dilation of 2 instead.
  5. "DETR-DC5+" indicates DETR-DC5 with some modifications, including using Focal Loss for bounding box classification and increasing number of object queries to 300.
  6. "Batch Infer Speed" refer to inference with batch size = 4 to maximize GPU utilization.
  7. The original implementation is based on our internal codebase. There are slight differences in the final accuracy and running time due to the plenty details in platform switch.

Installation

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

    We recommend you to use Anaconda to create a conda environment:

    conda create -n deformable_detr python=3.7 pip

    Then, activate the environment:

    conda activate deformable_detr
  • PyTorch>=1.5.1, torchvision>=0.6.1 (following instructions here)

    For example, if your CUDA version is 9.2, you could install pytorch and torchvision as following:

    conda install pytorch=1.5.1 torchvision=0.6.1 cudatoolkit=9.2 -c pytorch
  • Other requirements

    pip install -r requirements.txt

Compiling CUDA operators

cd ./models/ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py

Usage

Dataset preparation

Please download COCO 2017 dataset and organize them as following:

code_root/
└── data/
    └── coco/
        ├── train2017/
        ├── val2017/
        └── annotations/
        	├── instances_train2017.json
        	└── instances_val2017.json

Training

Training on single node

For example, the command for training Deformable DETR on 8 GPUs is as following:

GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 8 ./configs/r50_deformable_detr.sh

Training on multiple nodes

For example, the command for training Deformable DETR on 2 nodes of each with 8 GPUs is as following:

On node 1:

MASTER_ADDR=<IP address of node 1> NODE_RANK=0 GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 16 ./configs/r50_deformable_detr.sh

On node 2:

MASTER_ADDR=<IP address of node 1> NODE_RANK=1 GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 16 ./configs/r50_deformable_detr.sh

Training on slurm cluster

If you are using slurm cluster, you can simply run the following command to train on 1 node with 8 GPUs:

GPUS_PER_NODE=8 ./tools/run_dist_slurm.sh <partition> deformable_detr 8 configs/r50_deformable_detr.sh

Or 2 nodes of each with 8 GPUs:

GPUS_PER_NODE=8 ./tools/run_dist_slurm.sh <partition> deformable_detr 16 configs/r50_deformable_detr.sh

Some tips to speed-up training

  • If your file system is slow to read images, you may consider enabling '--cache_mode' option to load whole dataset into memory at the beginning of training.
  • You may increase the batch size to maximize the GPU utilization, according to GPU memory of yours, e.g., set '--batch_size 3' or '--batch_size 4'.

Evaluation

You can get the config file and pretrained model of Deformable DETR (the link is in "Main Results" session), then run following command to evaluate it on COCO 2017 validation set:

<path to config file> --resume <path to pre-trained model> --eval

You can also run distributed evaluation by using ./tools/run_dist_launch.sh or ./tools/run_dist_slurm.sh.

Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023