The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

Overview

nvdiffmodeling [origin_code]

Teaser image

Differentiable rasterization applied to 3D model simplification tasks, as described in the paper:

Appearance-Driven Automatic 3D Model Simplification
Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala and Samuli Laine
https://research.nvidia.com/publication/2021-04_Appearance-Driven-Automatic-3D
https://arxiv.org/abs/2104.03989

License

Copyright © 2021, NVIDIA Corporation. All rights reserved.

This work is made available under the Nvidia Source Code License.

For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing

Citation

@inproceedings{Hasselgren2021,
  title     = {Appearance-Driven Automatic 3D Model Simplification},
  author    = {Jon Hasselgren and Jacob Munkberg and Jaakko Lehtinen and Miika Aittala and Samuli Laine},
  booktitle = {Eurographics Symposium on Rendering},
  year      = {2021}
}

Installation

Requirements:

Tested in Anaconda3 with Python 3.6 and PyTorch 1.8.

One time setup (Windows)

  1. Install Microsoft Visual Studio 2019+ with Microsoft Visual C++.
  2. Install Cuda 10.2 or above. Note: Install CUDA toolkit from https://developer.nvidia.com/cuda-toolkit (not through anaconda)
  3. Install the appropriate version of PyTorch compatible with the installed Cuda toolkit. Below is an example with Cuda 11.1
conda create -n dmodel python=3.6
activate dmodel
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge
conda install imageio
pip install PyOpenGL glfw
  1. Install nvdiffrast in the dmodel conda env. Follow the installation instructions.

Every new command prompt

activate dmodel

Examples

Sphere to cow example:

python train.py --config configs/spot.json

The results will be stored in the out folder. The Spot model was created and released into the public domain by Keenan Crane.

Additional assets can be downloaded here [205MB]. Unzip and place the subfolders in the project data folder, e.g., data\skull. All assets are copyright of their respective authors, see included license files for further details.

Included examples

  • building.json - Our data
  • skull.json - Joint normal map and shape optimization on a skull
  • ewer.json - Ewer model from a reduced mesh as initial guess
  • gardenina.json - Aggregate geometry example
  • hibiscus.json - Aggregate geometry example
  • figure_brushed_gold_64.json - LOD example, trained against a supersampled reference
  • figure_displacement.json - Joint shape, normal map, and displacement map example

The json files that end in _paper.json are configs with the settings used for the results in the paper. They take longer and require a GPU with sufficient memory.

Server usage (through Docker)

  • Build docker image (run the command from the code root folder). docker build -f docker/Dockerfile -t diffmod:v1 . Requires a driver that supports Cuda 10.1 or newer.

  • Start an interactive docker container: docker run --gpus device=0 -it --rm -v /raid:/raid -it diffmod:v1 bash

  • Detached docker: docker run --gpus device=1 -d -v /raid:/raid -w=[path to the code] diffmod:v1 python train.py --config configs/spot.json

Owner
Qiujie (Jay) Dong
Computer Vision & Computer Graphics & Machine Learning & 3D mesh segmentation
Qiujie (Jay) Dong
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Texformer: 3D Human Texture Estimation from a Single Image with Transformers This is the official implementation of "3D Human Texture Estimation from

XiangyuXu 193 Dec 05, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022