Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Overview

Motion prediction with Hierarchical Motion Recurrent Network

Introduction

This work concerns motion prediction of articulate objects such as human, fish and mice. Given a sequence of historical skeletal joints locations, we model the dynamics of the trajectory as kinematic chains of SE(3) group actions, parametrized by se(3) Lie algebra parameters. A sequence to sequence model employing our novel Hierarchical Motion Recurrent (HMR) Network as the decoder is employed to learn the temporal context of input pose sequences so as to predict future motion.

Instead of adopting the conventional Euclidean L2 loss function for the 3D coordinates, we propose a geodesic regression loss layer on the SE(3) manifold which provides the following advantages.

  • The SE(3) representation respects the anatomical and kinematic constraints of the skeletal model, i.e. bone lengths and physical degrees of freedom at the joints.
  • Spatial relations underlying the joints are fully captured.
  • Subtleties of temporal dynamics are better modelled in the manifold space than Euclidean space due to the absence of redundancy and constraints in the Lie algebra parameterization.

Train and Predict

The main file is found in motion_prediction.py.
To train and predict on default setting, execute the following with python 3.

python motion_prediction.py
FLAGS Default value Possible values Remarks
dataset --dataset Human Human, Fish, Mouse
datatype --datatype lie lie, xyz
action --action all all, actions listed below
training --training=1 0, 1
visualize --visualize=1 0, 1
longterm --longterm=0 0, 1 Super long-term prediction exceeding 60s.
dataset: Human
action: walking, eating or smoking.

To train and predict for different settings, simply set different value for the flags. An example of long term prediction for walking on the Human dataset is given below.

python motion_prediction.py --action walking --longterm=1

Possible actions for Human 3.6m

["directions", "discussion", "eating", "greeting", "phoning",
 "posing", "purchases", "sitting", "sittingdown", "smoking",
 "takingphoto", "waiting", "walking", "walkingdog", "walkingtogether"]

The configuration file is found in training_config.py. There are choices of different LSTM architectures as well as different loss functions that can be chosen in the configuration.

Checkpoint and Output

checkpoints are saved in:

./checkpoint/dataset[Human, Fish, Mouse]/datatype[lie, xyz]_model(_recurrent-steps_context-window_hidden-size)_loss/action/inputWindow_outputWindow

outputs are saved in:

./output/dataset[Human, Fish, Mouse]/datatype[lie, xyz]_model_(_recurrent-steps_context-window_hidden-size)_loss/action/inputWindow_outputWindow

*[ ] denotes possible arguments and ( ) is specific for our HMR model

Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022