Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Overview

Python HPC

Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC. Este trabajo ha servido como base para las siguientes publicaciones:

@inproceedings{milla_rucci_cacic,
  title={Acelerando c{\'o}digo cient{\'\i}fico en Python usando Numba},
  author={Milla, Andr{\'e}s and Rucci, Enzo},
  booktitle={XXVII Congreso Argentino de Ciencias de la Computaci{\'o}n (CACIC 2021)},
  year={2021}
}
@misc{milla_rucci_pycon,
  address = {PyCon 2021},
  type = {Conferencia},
  title = {Acelerando aplicaciones paralelas en {Python}: {Numba} vs. {Cython}},
  url = {https://eventos.python.org.ar/events/pyconar2021/activity/448/},
  author={Milla, Andr{\'e}s and Rucci, Enzo},
  month = oct,
  year = {2021},
}
  • Tesina de grado - Un Estudio Comparativo entre Traductores de Python para Aplicaciones Paralelas de Memoria Compartida (en proceso)

Organización

El código fuente se encuentra en el directorio src, el cual contiene los siguientes subdirectorios:

  • versions: Contiene el código fuente de cada versión probada.
  • benchmarker: Script para realizar los benchmarks.
  • test: Tests de las versiones desarrolladas.
  • core: Utilidades comunes a los módulos.

Contribución

Requisitos

Paquete Versión
Python 3.8.10
PyPy 7.3.1
Cython 0.29.22
Pip 21.0.1
Virtualenv 20.0.17

En entornos basados en Debian se pueden instalar con el siguiente comando:

apt-get install python3 python3-pip cython pypy3 virtualenv

Ejecución

  1. Instalar las dependencias:

    make install

  2. Configurar los parámetros del benchmark en el archivo config.toml y ejecutar:

    make benchmark

Los resultados podrán verse en el directorio benchmarks.

  • Nota: En caso de no disponer el compilador ICC, se puede optar por otro a través del Makefile.

Contacto

Owner
Andrés Milla
Computer science student - Fullstack developer
Andrés Milla
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
EM-POSE 3D Human Pose Estimation from Sparse Electromagnetic Trackers.

EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers This repository contains the code to our paper published at ICCV 2021. For ques

Facebook Research 62 Dec 14, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023