Seq2seq - Sequence to Sequence Learning with Keras

Related tags

Deep Learningseq2seq
Overview

Seq2seq

Sequence to Sequence Learning with Keras

Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python deep learning library Keras. Using Seq2Seq, you can build and train sequence-to-sequence neural network models in Keras. Such models are useful for machine translation, chatbots (see [4]), parsers, or whatever that comes to your mind.

seq2seq

Getting started

Seq2Seq contains modular and reusable layers that you can use to build your own seq2seq models as well as built-in models that work out of the box. Seq2Seq models can be compiled as they are or added as layers to a bigger model. Every Seq2Seq model has 2 primary layers : the encoder and the decoder. Generally, the encoder encodes the input sequence to an internal representation called 'context vector' which is used by the decoder to generate the output sequence. The lengths of input and output sequences can be different, as there is no explicit one on one relation between the input and output sequences. In addition to the encoder and decoder layers, a Seq2Seq model may also contain layers such as the left-stack (Stacked LSTMs on the encoder side), the right-stack (Stacked LSTMs on the decoder side), resizers (for shape compatibility between the encoder and the decoder) and dropout layers to avoid overfitting. The source code is heavily documented, so lets go straight to the examples:

A simple Seq2Seq model:

import seq2seq
from seq2seq.models import SimpleSeq2Seq

model = SimpleSeq2Seq(input_dim=5, hidden_dim=10, output_length=8, output_dim=8)
model.compile(loss='mse', optimizer='rmsprop')

That's it! You have successfully compiled a minimal Seq2Seq model! Next, let's build a 6 layer deep Seq2Seq model (3 layers for encoding, 3 layers for decoding).

Deep Seq2Seq models:

import seq2seq
from seq2seq.models import SimpleSeq2Seq

model = SimpleSeq2Seq(input_dim=5, hidden_dim=10, output_length=8, output_dim=8, depth=3)
model.compile(loss='mse', optimizer='rmsprop')

Notice that we have specified the depth for both encoder and decoder as 3, and your model has a total depth of 3 + 3 = 6. You can also specify different depths for the encoder and the decoder. Example:

import seq2seq
from seq2seq.models import SimpleSeq2Seq

model = SimpleSeq2Seq(input_dim=5, hidden_dim=10, output_length=8, output_dim=20, depth=(4, 5))
model.compile(loss='mse', optimizer='rmsprop')

Notice that the depth is specified as tuple, (4, 5). Which means your encoder will be 4 layers deep whereas your decoder will be 5 layers deep. And your model will have a total depth of 4 + 5 = 9.

Advanced Seq2Seq models:

Until now, you have been using the SimpleSeq2Seq model, which is a very minimalistic model. In the actual Seq2Seq implementation described in [1], the hidden state of the encoder is transferred to decoder. Also, the output of decoder at each timestep becomes the input to the decoder at the next time step. To make things more complicated, the hidden state is propogated throughout the LSTM stack. But you have no reason to worry, as we have a built-in model that does all that out of the box. Example:

import seq2seq
from seq2seq.models import Seq2Seq

model = Seq2Seq(batch_input_shape=(16, 7, 5), hidden_dim=10, output_length=8, output_dim=20, depth=4)
model.compile(loss='mse', optimizer='rmsprop')

Note that we had to specify the complete input shape, including the samples dimensions. This is because we need a static hidden state(similar to a stateful RNN) for transferring it across layers. (Update : Full input shape is not required in the latest version, since we switched to Recurrent Shop backend). By the way, Seq2Seq models also support the stateful argument, in case you need it.

You can also experiment with the hidden state propogation turned off. Simply set the arguments broadcast_state and inner_broadcast_state to False.

Peeky Seq2seq model:

Let's not stop there. Let's build a model similar to cho et al 2014, where the decoder gets a 'peek' at the context vector at every timestep.

cho et al 2014

To achieve this, simply add the argument peek=True:

import seq2seq
from seq2seq.models import Seq2Seq

model = Seq2Seq(batch_input_shape=(16, 7, 5), hidden_dim=10, output_length=8, output_dim=20, depth=4, peek=True)
model.compile(loss='mse', optimizer='rmsprop')

Seq2seq model with attention:

Attention Seq2seq

Let's not stop there either. In all the models described above, there is no allignment between the input sequence elements and the output sequence elements. But for machine translation, learning a soft allignment between the input and output sequences imporves performance.[3]. The Seq2seq framework includes a ready made attention model which does the same. Note that in the attention model, there is no hidden state propogation, and a bidirectional LSTM encoder is used by default. Example:

import seq2seq
from seq2seq.models import AttentionSeq2Seq

model = AttentionSeq2Seq(input_dim=5, input_length=7, hidden_dim=10, output_length=8, output_dim=20, depth=4)
model.compile(loss='mse', optimizer='rmsprop')

As you can see, in the attention model you need not specify the samples dimension as there are no static hidden states involved(But you have to if you are building a stateful Seq2seq model). Note: You can set the argument bidirectional=False if you wish not to use a bidirectional encoder.

Final Words

That's all for now. Hope you love this library. For any questions you might have, create an issue and I will get in touch. You can also contribute to this project by reporting bugs, adding new examples, datasets or models.

Installation:

sudo pip install git+https://github.com/farizrahman4u/seq2seq.git

Requirements:

Working Example:

Papers:

Owner
Fariz Rahman
Fariz Rahman
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022