Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Overview

Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Code for ReLoBRaLo.

Abstract

Physics Informed Neural Networks (PINN) are algorithms from deeplearning leveraging physical laws by including partial differential equations (PDE)together with a respective set of boundary and initial conditions (BC / IC) aspenalty terms into their loss function. As the PDE, BC and IC loss function parts cansignificantly differ in magnitudes, due to their underlying physical units or stochasticityof initialisation, training of PINNs may suffer from severe convergence and efficiencyproblems, causing PINNs to stay beyond desirable approximation quality. In thiswork, we observe the significant role of correctly weighting the combination of multiplecompetitive loss functions for training PINNs effectively. To that end, we implementand evaluate different methods aiming at balancing the contributions of multipleterms of the PINNs loss function and their gradients. After review of three existingloss scaling approaches (Learning Rate Annealing, GradNorm as well as SoftAdapt),we propose a novel self-adaptive loss balancing of PINNs calledReLoBRaLo(RelativeLoss Balancing with Random Lookback). Finally, the performance of ReLoBRaLo iscompared and verified against these approaches by solving both forward as well asinverse problems on three benchmark PDEs for PINNs: Burgers’ equation, Kirchhoff’splate bending equation and Helmholtz’s equation. Our simulation studies show thatReLoBRaLo training is much faster and achieves higher accuracy than training PINNswith other balancing methods and hence is very effective and increases sustainabilityof PINNs algorithms. The adaptability of ReLoBRaLo illustrates robustness acrossdifferent PDE problem settings. The proposed method can also be employed tothe wider class of penalised optimisation problems, including PDE-constrained andSobolev training apart from the studied PINNs examples.

Launch Training

Example:

python train.py --verbose --layers 2 --nodes 32 --task helmholtz --update_rule relobralo --resample

The available options are the following:

  • --path, default: experiments, type: str, path where to store the results

  • --layers, default: 1, type: int, number of layers

  • --nodes, default: 32, type: int, number of nodes

  • --network, default: fc, type: str, type of network

  • --optimizer, default: adam, type: str, type of optimizer

  • --lr, default: 0.001, type: float, learning rate

  • --patience, default: 3, type: int, how many evaluations without improvement to wait before reducing learning rate

  • --factor, default: .1, type: float, multiplicative factor by which to reduce the learning rate

  • --task, default: helmholtz, type: str, type of task to fit

  • --inverse, action: store_true, solve inverse problem

  • --inverse_var, default: None, type: float, target inverse variable

  • --update_rule, default: manual, type: str, type of balancing

  • --T, default: 1., type: float, temperature parameter for softmax

  • --alpha, default: .999, type: float, rate for exponential decay

  • --rho, default: 1., type: float, rate for exponential decay

  • --aggregate_boundaries, action: store_true, aggregate all boundary terms into one before balancing

  • --epochs, default: 100000, type: int, number of epochs

  • --resample, action: store_true, resample datapoints or keep them fixed

  • --batch_size, default: 1024, type: int, number of sampled points in a batch

  • --verbose, action: store_true, print progress to terminal

Owner
Rafael Bischof
Rafael Bischof
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021