SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

Related tags

Deep Learningscaaml
Overview

SCAAML: Side Channel Attacks Assisted with Machine Learning

SCAAML banner

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Available compoments

  • scaaml/: The SCAAML framework code. Its used by the various tools.
  • scaaml_intro/: A Hacker Guide To Deep Learning Based Side Channel Attacks. Code, dataset and models used in our step by step tutorial on how to use deep-learning to perform AES side-channel attacks in practice.

Install

Dependencies

To use SCAAML you need to have a working version of TensorFlow 2.x and a version of Python >=3.6

SCAAML framework install

  1. Clone the repository: git clone github.com/google/scaaml/
  2. Install the SCAAML package: python setup.py develop

Dataset and models

Every SCAAML component rely on a datasets and optional models that you will need to download in the component directory. The link to download those are available in the components specific README.md. Simply click on the directory representing the component of your choice, or the link to the component in the list above.

Publications & Citation

Here is the list of publications and talks related to SCAAML. If you use any of its codebase, models or datasets please cite:

@online{bursztein2019scaaml,
  title={SCAAML:  Side Channel Attacks Assisted with Machine Learning},
  author={Bursztein, Elie and others},
  year={2019},
  publisher={GitHub},
  url={https://github.com/google/scaaml},
}

Additionally please also cite the talks and publications that are the most relevant to your work, so reader can quickly find the right information. Last but not least, you are more than welcome to add your publication/talk to the list below by making a pull request 😊 .

SCAAML AES tutorial

DEF CON talk that provides a practical introduction to AES deep-learning based side-channel attacks

@inproceedings{burzteindc27,
title={A Hacker Guide To Deep Learning Based Side Channel Attacks},
author={Elie Bursztein and Jean-Michel Picod},
booktitle ={DEF CON 27},
howpublished = {\url{https://elie.net/talk/a-hackerguide-to-deep-learning-based-side-channel-attacks/}}
year={2019},
editor={DEF CON}
}

Disclaimer

This is not an official Google product.

Owner
Google
Google ❤️ Open Source
Google
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022