Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Overview

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

YOLOv5 with alpha-IoU losses implemented in PyTorch.

Example results on the test set of PASCAL VOC 2007 using YOLOv5s trained by the vanilla IoU loss (top row) and the alpha-IoU loss with alpha=3 (bottom row). The alpha-IoU loss performs better than the vanilla IoU loss because it can localize objects more accurately (image 1 and 2), thus can detect more true positive objects (image 3 to 5) and fewer false positive objects (image 6 and 7).

Example results on the val set of MS COCO 2017 using YOLOv5s trained by the vanilla IoU loss (top row) and the alpha-IoU loss with alpha=3 (bottom row). The alpha-IoU loss performs better than the vanilla IoU loss because it can localize objects more accurately (image 1), thus can detect more true positive objects (image 2 to 5) and fewer false positive objects (image 4 to 7). Note that image 4 and 5 detect both more true positive and fewer false positive objects.

Citation

If you use our method, please consider citing:

@inproceedings{Jiabo_Alpha-IoU,
  author    = {He, Jiabo and Erfani, Sarah and Ma, Xingjun and Bailey, James and Chi, Ying and Hua, Xian-Sheng},
  title     = {Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression},
  booktitle = {NeurIPS},
  year      = {2021},
}

Modifications

This repository is a fork of ultralytics/yolov5, with an implementation of alpha-IoU losses while keeping the code as close to the original as possible.

Alpha-IoU Losses

Alpha-IoU losses can be configured in Line 131 of utils/loss.py, functionesd as 'bbox_alpha_iou'. The alpha values and types of losses (e.g., IoU, GIoU, DIoU, CIoU) can be selected in this function, which are defined in utils/general.py. Note that we should use a small constant epsilon to avoid torch.pow(0, alpha) or denominator=0.

Install

Python>=3.6.0 is required with all requirements.txt installed including PyTorch>=1.7:

$ git clone https://github.com/Jacobi93/Alpha-IoU
$ cd Alpha-IoU
$ pip install -r requirements.txt

Configurations

Configuration files can be found in data. We do not change either 'voc.yaml' or 'coco.yaml' used in the original repository. However, we could do more experiments. E.g.,

voc25.yaml # randomly use 25% PASCAL VOC as the training set
voc50.yaml # randomly use 50% PASCAL VOC as the training set

Code for generating different small training sets is in generate_small_sets.py. Code for generating different noisy labels is in generate_noisy_labels.py, and we should change the 'img2label_paths' function in utils/datasets.py accordingly.

Implementation Commands

For detailed installation instruction and network training options, please take a look at the README file or issue of ultralytics/yolov5. Following are sample commands we used for training and testing YOLOv5 with alpha-IoU, with more samples in instruction.txt.

python train.py --data voc.yaml --hyp hyp.scratch.yaml --cfg yolov5s.yaml --batch-size 64 --epochs 300 --device '0'
python test.py --data voc.yaml --img 640 --conf 0.001 --weights 'runs/train/voc_yolov5s_iou/weights/best.pt' --device '0'
python detect.py --source ../VOC/images/detect500 --weights 'runs/train/voc_yolov5s_iou/weights/best.pt' --conf 0.25

We can also randomly generate some images for detection and visualization results in generate_detect_images.py.

Pretrained Weights

Here are some pretrained models using the configurations in this repository, with alpha=3 in all experiments. Details of these pretrained models can be found in runs/train. All results are tested using 'weights/best.pt' for each experiment. It is a very simple yet effective method so that people is able to quickly apply our method to existing models following the 'bbox_alpha_iou' function in utils/general.py. Note that YOLOv5 has been updated for many versions and all pretrained models in this repository are obtained based on the YOLOv5 version 4.0, where details of all versions for YOLOv5 can be found. Researchers are also welcome to apply our method to other object detection models, e.g., Faster R-CNN, DETR, etc.

Owner
Jacobi(Jiabo He)
Jacobi(Jiabo He)
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022