DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

Overview

dm_alchemy: DeepMind Alchemy environment

Overview | Requirements | Installation | Usage | Documentation | Tutorial | Paper | Blog post

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure. It was created to test for the ability of agents to reason and plan via latent state inference, as well as useful exploration and experimentation. It is Unity-based.

Overview

This environment is provided through pre-packaged Docker containers.

This package consists of support code to run these Docker containers. You interact with the task environment via a dm_env Python interface.

Please see the documentation for more detailed information on the available tasks, actions and observations.

Requirements

dm_alchemy requires Docker, Python 3.6.1 or later and a x86-64 CPU with SSE4.2 support. We do not attempt to maintain a working version for Python 2.

Alchemy is intended to be run on Linux and is not officially supported on Mac and Windows. However, it can in principle be run on any platform (though installation may be more of a headache). In particular, on Windows, you will need to install and run Alchemy with WSL.

Note: We recommend using Python virtual environment to mitigate conflicts with your system's Python environment.

Download and install Docker:

Ensure that docker is working correctly by running docker run -d gcr.io/deepmind-environments/alchemy:v1.0.0.

Installation

You can install dm_alchemy by cloning a local copy of our GitHub repository:

$ git clone https://github.com/deepmind/dm_alchemy.git
$ pip install wheel
$ pip install --upgrade setuptools
$ pip install ./dm_alchemy

To also install the dependencies for the examples/, install with:

$ pip install ./dm_alchemy[examples]

Usage

Once dm_alchemy is installed, to instantiate a dm_env instance run the following:

import dm_alchemy

LEVEL_NAME = ('alchemy/perceptual_mapping_'
              'randomized_with_rotation_and_random_bottleneck')
settings = dm_alchemy.EnvironmentSettings(seed=123, level_name=LEVEL_NAME)
env = dm_alchemy.load_from_docker(settings)

For more details see the introductory colab.

Open in colab

Citing Alchemy

If you use Alchemy in your work, please cite the accompanying technical report:

@article{wang2021alchemy,
    title={Alchemy: A structured task distribution for meta-reinforcement learning},
    author={Jane Wang and Michael King and Nicolas Porcel and Zeb Kurth-Nelson
        and Tina Zhu and Charlie Deck and Peter Choy and Mary Cassin and
        Malcolm Reynolds and Francis Song and Gavin Buttimore and David Reichert
        and Neil Rabinowitz and Loic Matthey and Demis Hassabis and Alex Lerchner
        and Matthew Botvinick},
    year={2021},
    journal={arXiv preprint arXiv:2102.02926},
    url={https://arxiv.org/abs/2102.02926},
}

Notice

This is not an officially supported Google product.

Owner
DeepMind
DeepMind
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021