FastyAPI is a Stack boilerplate optimised for heavy loads.

Related tags

Deep LearningFastyAPI
Overview

Logo

FastyAPI

A FastAPI based Stack boilerplate for heavy loads.
Explore the docs »

View Demo · Report Bug · Request Feature

Table of Contents
  1. About The Project
  2. Getting Started
  3. Roadmap
  4. Contributing
  5. License

About The Project

FastyAPI is a FastAPI based Stack boilerplate designed for heavy workloads and simple developement in mind.

Here's why:

  • FastAPI provides such a great developement experience due to its simple structure and the auto generated docs.
  • we've improves this further by providing you with a simple design pattern, no subfolders <3
  • every Stack element is carefully chosen and tested/optimised against heavy workloads
  • boiletplate code for different situations, websocket, crud etc.. yet without bloat.

(back to top)

Built With

Our stack is as follows

  • Gunicorn is a Python Web Server Gateway Interface (WSGI) HTTP server. It is a pre-fork worker model
    • Gunicorn would act as a process manager, listening on the port and the IP. And it would transmit the communication to the worker processes running the Uvicorn class.
  • FastAPI is a Web framework for developing RESTful APIs in Python.
    • minimalistic, simple and scales well
  • Celery soon + optional
  • Flower soon + optional
  • Redis is an in-memory data structure store, used as a distributed, in-memory key–value database, cache and message broker
  • Motor presents a coroutine-based API for non-blocking access to MongoDB
  • MongoDB is a source-available cross-platform document-oriented database program. Classified as a NoSQL database program, MongoDB uses JSON-like documents with optional schemas.
    • Sharding is the process of storing data records across multiple machines and it is MongoDB's approach to meeting the demands of data growth.
  • Docker container is a standard unit of software that packages up code and all its dependencies so the application runs quickly and reliably from one computing environment to another.

(back to top)

Getting Started

Set of instructions to get started with FastyAPI

Prerequisites

  • Python3
  • pip3
  • venv
    python3 -m pip install --user virtualenv

Environment setup

  1. Create the environment
    python3 -m venv .
  2. Activate the environment
    source env/bin/activate

Installation

  1. Clone the repo
    git clone https://github.com/achaayb/FastyAPI
  2. Install the dependencies
    cd FastyAPI 
    pip3 install -r requirements.txt

Running and testing

  1. run uvicorn
    uvicorn app:app --reload
  2. test the app
    • navigate to : http://localhost:8000
    • response should be something like this :
      {"data":"","code":"success","message":"FastyAPI live!"}

(back to top)

Roadmap

  • Base boilerplate
  • Follow a naming convention
  • Add comments and stuff
  • Optimise the base boilerplate
  • Finish up the base stack
    • Gunicorn w/uvicorn workers
    • FastAPI
    • Motor
    • Mongodb (sharding)
  • Stress test 1
    • Normal test (fork)
    • Websocket stress (fork)
  • implement stack extentions
    • Celery
    • Redis
    • Flower
  • Stress test 2
    • Normal test (fork)
    • Cpu bound operations test (fork)
  • Docker

See the open issues for a full list of proposed features (and known issues).

(back to top)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the MIT License. See LICENSE.txt for more information.

(back to top)

Project Link: https://github.com/achaayb/FastyAPI

(back to top)

Owner
Ali Chaayb
Backend developer, cybersecurity and scaling enthusiast.
Ali Chaayb
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022