Benchmark for evaluating open-ended generation

Overview

OpenMEVA

Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging.

OpenMEVA is a benchmark for evaluating open-ended story generation metrics (Please refer to the Paper List for more information about Open-eNded Language Generation tasks) described in the paper: OpenMEVA: A Benchmark for Evaluating Open-ended Story Generation Metrics (ACL 2021 Long Paper). Besides, OpenMEVA also provides an open-source and extensible toolkit for metric implementation, evaluation, comparison, and analysis, as well as data perturbation techniques to help generate large numbers of customized test cases. We expect the toolkit to empower fast development of automatic metrics.

Contents

Introduction for Language Generation Evaluation

Since human evaluation is time-consuming, expensive, and difficult to reproduce, the community commonly uses automatic metrics for evaluation. We roughly divide existing metrics as follows:

  • Previous studies in conditional language generation tasks (e.g., machine translation) have developed several successful referenced metrics, which roughly quantify the lexical overlap (e.g., BLEU) or semantic entailment (e.g., BertScore) between a generated sample and the reference.
  • Referenced metrics correlate poorly with human judgments when evaluating open-ended language generation. Specifically, a generated sample can be reasonable if it is coherent to the given input, and self-consistent within its own context but not necessarily being similar to the reference in literal or semantics. To address the one-to-many issue, unreferenced metrics (e.g., UNION) are proposed to measure the quality of a generated sample without any reference.
  • Besides, some researchers propose to combine referenced and unreferenced metrics, i.e. hybrid metrics, which usually average two individual metric scores (e.g. RUBER) or learn from human preference (e.g., ADEM). However, ADEM is reported to lack generalization and robustness with limited human annotation.

The existing generation models are still far from human ability to generate reasonable texts, particularly for open-ended language generation tasks such as story generation. One important factor that hinders the research is the lack of powerful metrics for measuring generation quality. Therefore, we propose OpenMEVA as the standard paradigm for measuring progress of metrics.

Install

Clone the repository from our github page (don't forget to star us!)

git clone https://github.com/thu-coai/OpenMEVA.git

Then install all the requirements:

pip install -r requirements.txt

Then install the package with

python setup.py install

If you also want to modify the code, run this:

python setup.py develop

Toolkit

I. Metrics Interface

1. Metric List

We publish the standard implementation for the following metrics:

2. Usage

It is handy to construct a metric object and use it to evaluate given examples:

from eva.bleu import BLEU
metric = BLEU()

# for more information about the metric
print(metric.info)

# data is a list of dictionary [{"context": ..., "candidate":..., "reference": ...}]
print(metric.compute(data))

We present a python file test.py as an instruction to access the API.

These metrics are not exhaustive, it is a starting point for further metric research. We welcome any pull request for other metrics (requiring implementation of only three methods including __init__, info, compute).

3. Training Learnable Metrics

Execute the following command for training learnable metrics:

cd ./eva/model

# training language model for computing forward perplexity
bash ./run_language_modeling.sh

# training the unreferenced model for computing RUBER (RNN version)
bash ./run_ruber_unrefer.sh

# training the unreferenced model for computing RUBER (BERT version)
bash ./run_ruber_unrefer_bert.sh

# training the model for computing UNION
bash ./run_union.sh

II. Evaluating Human Scores

The python file test.py also includes detailed instruction to access the API for evaluating human scores.

1. Constructing

from eva.heva import Heva

# list of all possible human scores (int/float/str).
all_possible_score_list = [1,2,3,4,5]

# construct an object for following evaluation
heva = Heva(all_possible_score_list)

2. Consistency of human scores

# list of human score list, each row includes all the human scores for an example
human_score_list = [[1,3,2], [1,3,3], [2,3,1], ...]

print(heva.consistency(human_score_list))
# {"Fleiss's kappa": ..., "ICC correlation": ..., "Kendall-w":..., "krippendorff's alpha":...}
# the results includes correlation and p-value for significance test.

3. Mean Test for scores of examples from different source

# list of metric scores (float)
metric_score_1, metric_score_2 = [3.2, 2.4, 3.1,...], [3.5, 1.2, 2.3, ...]

# T-test for the means of two independent samples of scores.
print(heva.mean_test(metric_score_1, metric_score_2))
# {"t-statistic": ..., "p-value": ...}

4. Distribution of human scores

# list of human scores (float)
human_score = [2.0, 4.2, 1.2, 4.9, 2.6, 3.1, 4.0, 1.5,...]

# path for saving the figure of distribution
figure_path = "./figure"

# indicating the source of the annotated examples. default: ""
model_name = "gpt"

# plot the figure of distribution of human scores
heva.save_distribution_figure(score=human_score, save_path=figure_path, model_name=model_name, ymin=0, ymax=50)

5. Correlation between human and metric scores

# list of human scores (float)
human_score = [2.0, 4.2, 1.2, 4.9, 2.6, 3.1, 4.0, 1.5,...]

# list of metric scores (float)
metric_score = [3.2, 2.4, 3.1, 3.5, 1.2, 2.3, 3.5, 1.1,...]

# computing correlation
print(heva.correlation(metric_score, human_score))

# path for saving the figure of distribution
figure_path = "./figure"

# indicating the source of the metric scores. default: ""
metric_name = "bleu"

# plot the figure of metric score vs. human scores
heva.save_correlation_figure(human_score, metric_score, save_path=figure_path, metric_name=metric_name)

III. Perturbation Techniques

1. Perturbation List

We provide perturbation techniques in following aspects to create large scale test cases for evaluating comprehensive capabilities of metrics:

  • Lexical repetition

    • Repeating n-grams or sentences:

      He stepped on the stage and stepped on the stage.
  • Semantic repetition:

    • Repeating sentences with paraphrases by back translation:

      He has been from Chicago to Florida. He moved to Florida from Chicago.

  • Character behavior:

    • Reordering the subject and object of a sentence:

      Lars looked at the girl with desire.→ the girl looked at Lars with desire.
    • Substituting the personal pronouns referring to other characters:

      her mother took them to ... → their mother took her to ...
  • Common sense:

    • Substituting the head or tail entities in a commonsense triple of ConcepNet:

      Martha puts her dinner into theoven. She lays down fora quick nap. She oversleeps and runs into the kitchen (→ garden) to take out her burnt dinne.
  • Consistency:

    • Inserting or Deleting negated words or prefixes:

      She had (→ did not have) money to get vaccinated. She had a flu shot ...
      She agreed (→ disagreed) to get vaccinated.
    • Substituting words with antonyms:

      She is happy (→ upset) that she had a great time ...
  • Coherence:

    • Substituting words, phrases or sentences:

      Christmas was very soon. Kelly wanted to put up the Christmas tree. (→ Eventually it went into remission.)
  • Causal Relationship:

    • Reordering the cause and effect:

      the sky was clear so he could see clearly the boat. → he could see clearly the boat so the sky was clear.
    • Substituting the causality-related words randomly:

      the sky was clear so (→ because) he could see clearly the boat.
  • Temporal Relationship:

    • Reordering two sequential events:

      I eat one bite. Then I was no longer hungry.I was no longer hungry. Then I eat one bite.
    • Substituting the time-related words:

      After (→ Before) eating one bite I was no longer hungry.
  • Synonym:

    • Substituting a word with its synonym:

      I just purchased (→ bought) my uniforms.
  • Paraphrase:

    • Substituting a sentence with its paraphrase by back translation:

      Her dog doesn't shiver anymore.Her dog stops shaking.
  • Punctuation:

    • Inserting or Deleting inessential punctuation mark:

      Eventually,Eventually he became very hungry.
  • Contraction:

    • Contracting or Expanding contraction:

      I’ll (→ I will) have to keep waiting .
  • Typo:

    • Swapping two adjacent characters:

      that orange (→ ornage) broke her nose.
    • Repeating or Deleting a character:

      that orange (→ orannge) broke her nose.

2. Usage

It is handy to construct a perturbation object and use it to perturb given examples:

from eva.perturb.perturb import *
custom_name = "story"
method = add_typos(custom_name)

# data is a list of dictionary [{"id":0, "ipt": ..., "truth":...}, ...]
print(method.construct(data))
# the perturbed examples can be found under the directory "custom_name"

We present a python file test_perturb.py as an instruction to access the API.

You can download dependent files for some perturbation techniques by executing the following command:

cd ./eva/perturb
bash ./download.sh

You can also download them by THUCloud or Google Drive.

These perturbation techniques are not exhaustive, it is a starting point for further evaluation research. We welcome any pull request for other perturbation techniques (requiring implementation of only two methods including __init__, construct).

Note 📑 We adopt uda for back translation. We provide an example eva/perturb/back_trans_data/story_bt.json to indicate the format of the back translation result. And you can download the results for ROCStories and WritingPrompts by THUCloud or Google Drive.

Benchmark

I. Datasets

1. Machine-Generated Stories (MAGS) with manual annotation

We provide annotated stories from ROCStories (ROC) and WritingPrompts (WP). Some statistics are as follows:

Boxplot of annotation scores for each story source (Left: ROC, Right: WP):

2. Auto-Constructed Stories (ACTS)

We create large-scale test examples based on ROC and WP by aforementioned perturbation techniques. ACTS includes examples for different test types, i.e., discrimination test and invariance test.

  • The discrimination test requires metrics to distinguish human-written positive examples from negative ones. Wecreate each negative example by applying pertur-bation within an individual aspect. Besides, we also select different positive examples targeted for corresponding aspects. Below table shows the numbers of positive and negative examples in different aspects.

  • The invariance test expect the metric judgments to remain the same when we apply rationality-preserving perturbations, which means almost no influence on the quality of examples. The original examples can be either the human-written stories or the negative examples created in the discrimination test. Below table shows the numbers of original (also perturbed) positive and negative examples in different aspects.

3. Download & Data Instruction

You can download the whole dataset by THUCloud or Google Drive.

├── data
   └── `mags_data`
       ├── `mags_roc.json`	# sampled stories and corresponding human annotation.   
       ├── `mags_wp.json`		# sampled stories and corresponding human annotation.       
   └── `acts_data`
       ├── `roc`
              └── `roc_train_ipt.txt`	# input for training set
              └── `roc_train_opt.txt`	# output for training set
              └── `roc_valid_ipt.txt`	# input for validation set
              └── `roc_valid_opt.txt`	# output for validation set
              └── `roc_test_ipt.txt`	# input for test set
              └── `roc_test_opt.txt`	# output for test set
              └── `discrimination_test`                        
                 ├── `roc_lexical_rept.txt`
                 ├── `roc_lexical_rept_perturb.txt`										
                 ├── `roc_semantic_rept.txt`
                 ├── `roc_semantic_rept_perturb.txt`
                 ├── `roc_character.txt`
                 ├── `roc_character_perturb.txt`
                 ├── `roc_commonsense.txt`
                 ├── `roc_commonsense_perturb.txt`												
                 ├── `roc_coherence.txt`
                 ├── `roc_coherence_perturb.txt`
                 ├── `roc_consistency.txt`
                 ├── `roc_consistency_perturb.txt`								
                 ├── `roc_cause.txt`
                 ├── `roc_cause_perturb.txt`       										
                 ├── `roc_time.txt`
                 ├── `roc_time_perturb.txt`                    
              └── `invariance_test`
                 ├── `roc_synonym_substitute_perturb.txt`
                 ├── `roc_semantic_substitute_perturb.txt`
                 ├── `roc_contraction_perturb.txt`
                 ├── `roc_delete_punct_perturb.txt`
                 ├── `roc_typos_perturb.txt`
                 ├── `roc_negative_sample.txt`	# sampled negative samples from the discrimination test.	
                 ├── `roc_negative_sample_synonym_substitute_perturb.txt`
                 ├── `roc_negative_sample_semantic_substitute_perturb.txt`
                 ├── `roc_negative_sample_contraction_perturb.txt`
                 ├── `roc_negative_sample_delete_punct_perturb.txt`
                 ├── `roc_negative_sample_typos_perturb.txt`
       ├── `wp`
              └── ...

II. Tasks

OpenMEVA includes a suite of tasks to test comprehensive capabilities of metrics:

1. Correlation with human scores (based on MAGS)

2. Generalization across generation models and dataset (for learnable metrics, based on MAGS)

3. Judgment in general linguistic features (based on the discrimination test set of ACTS)

4. Robustness to rationality-preserving perturbations (based on the invariance test set of ACTS)

Note: The smaller absolute value of correlation is the better.

5. Fast Test

You can test these capabilities of new metrics by following command:

cd ./benchmark

# test correlation with human scores and generalization
python ./corr_gen.py

# test judgment
python ./judge.py

# test robustness
python ./robust.py

We take BLEU and Forward Perplexity as examples in the python files. You can test your own metrics by minor modification.

How to Cite

@misc{guan2021openmeva,
      title={OpenMEVA: A Benchmark for Evaluating Open-ended Story Generation Metrics}, 
      author={Jian Guan and Zhexin Zhang and Zhuoer Feng and Zitao Liu and Wenbiao Ding and Xiaoxi Mao and Changjie Fan and Minlie Huang},
      year={2021},
      eprint={2105.08920},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

It's our honor to help you better explore language generation evaluation with our toolkit and benchmark.

Owner
Conversational AI groups from Tsinghua University
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022