PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

Overview

PIXOR: Real-time 3D Object Detection from Point Clouds

This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the driving scene using lidar data in the Birds' Eye View (BEV) and uses a single stage object detector to predict the poses of road objects with respect to the car

PIXOR: Real-time 3D Object Detection from Point Clouds

alt text

Highlights

  • PyTorch 1.0 Reproduced and trained from scratch using the KITTI dataset
  • Fast Custom LiDAR preprocessing using C++
  • Multi-GPU Training and Pytorch MultiProcessing package to speed up non-maximum suppression during evaluation
  • Tensorboard Visualize trainig progress using Tensorboard
  • KITTI and ROSBAG Demo Scripts that supports running inferences directly on raw KITTI data or custom rosbags.

Install

Dependencies:

  • Python 3.5(3.6)
  • Pytorch (Follow Official Installation Guideline)
  • Tensorflow (see their website)
  • Numpy, MatplotLib, OpenCV3
  • PyKitti (for running on KITTI raw dataset)
  • gcc
pip install shapely numpy matplotlib
git clone https://github.com/philip-huang/PIXOR
cd PIXOR/srcs/preprocess
make

(Optional) If you want to run this project on a custom rosbag containing Velodyne HDL64 scans the system must be Linux with ROS kinetic installed. You also need to install the velodyne driver into the velodyne_ws folder.

Set up the velodyne workspace by running ./velodyne_setup.bash and press Ctrl-C as necessary.

Demo

A helper class is provided in run_kitti.py to simplify writing inference pipelines using pre-trained models. Here is how we would do it. Run this from the src folder (suppose I have already downloaded my KITTI raw data and extracted to somewhere)

from run_kitti import *

def make_kitti_video():
     
    basedir = '/mnt/ssd2/od/KITTI/raw'
    date = '2011_09_26'
    drive = '0035'
    dataset = pykitti.raw(basedir, date, drive)
   
    videoname = "detection_{}_{}.avi".format(date, drive)
    save_path = os.path.join(basedir, date, "{}_drive_{}_sync".format(date, drive), videoname)    
    run(dataset, save_path)

make_kitti_video()

Training and Evaluation

Our Training Result (as of Dec 2018) alt text

All configuration (hyperparameters, GPUs, etc) should be put in a config.json file and save to the directory srcs/experiments/$exp_name$ To train

python srcs/main.py train (--name=$exp_name$)

To evaluate an experiment

python srcs/main.py val (--name=$exp_name$)

To display a sample result

python srcs/main.py test --name=$exp_name$

To view tensorboard

tensorboard --logdir=srcs/logs/$exp_name$

TODO

  • Improve training accuracy on KITTI dataset
  • Data augmentation
  • Generalization gap on custom driving sequences
  • Data Collection
  • Improve model (possible idea: use map as a prior)

Credits

Project Contributors

  • Philip Huang
  • Allan Liu

Paper Citation below



@inproceedings{yang2018pixor,
  title={PIXOR: Real-Time 3D Object Detection From Point Clouds},
  author={Yang, Bin and Luo, Wenjie and Urtasun, Raquel}
}

We would like to thank aUToronto for genersouly sponsoring GPUs for this project

Owner
Philip Huang
University of Toronto | Engineering Science | Machine Intelligence
Philip Huang
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022