Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

Overview

WIDER-YOLO : Yüz Tespit Uygulaması Yap

Wider-Yolo Kütüphanesinin Kullanımı

1. Wider Face Veri Setini İndir

Not: İndirilen veri setini ismini değiştirmeden wider_data klasörün içine atın.

2. Dosyaları Düzeni:

datasets/ 
      wider_face_split/  
          - wider_face_train_bbx_gt.txt
          - wider_face_val_bbx_gt.txt
         
      WIDER_train/
         - images

      WIDER_train_annotations 

      WIDER_val
         - images

      WIDER_val_annotations

Not: WIDER_train_annotations ve WIDER_val_annotations klasörleri oluşturmanıza gerek yoktur.

3. Wider Veri Setini Voc Xml Formatına Çevir

python ./wider_to_xml.py -ap ./wider_data/wider_face_split/wider_face_train_bbx_gt.txt -tp ./wider_data/WIDER_train_annotations/ -ip ./wider_data/WIDER_train/images/
python ./wider_to_xml.py -ap ./wider_data/wider_face_split/wider_face_val_bbx_gt.txt -tp ./wider_data/WIDER_val_annotations/ -ip ./wider_data/WIDER_val/images/

4. Voc Xml Veri Setini Yolo Formatına Çevir

python ./xml_to_yolo --path ./wider_data/WIDER_train_annotations/
python ./xml_to_yolo --path ./wider_data/WIDER_val_annotations/

5. Yolo Modelini Eğit

!yolov5 train --data data.yaml --weights 'yolov5n.pt' --batch-size 16 --epochs 100 --imgs 512

6. Yolo Modelini Test Et

Tek resim test etmek için:

!yolov5 detect --weights wider-yolo.pth --source  file.jpg  

Tüm resim dosyasını test etmek için

!yolov5 detect --weights wider-yolo.pth --source  path/*.jpg 

Not: Yeterli Gpu kaynağına sahip olamadığım için wider seti için düşük parametre değerleri verdim. Parametre Değerleri:

batch-size: 256, epochs: 5, imgs 320

6. Yolov5 + Sahi Algoritmasını Test Et

from sahi.model import Yolov5DetectionModel
from sahi.utils.cv import read_image
from sahi.predict import get_prediction, get_sliced_prediction, predict
from IPython.display import Image

detection_model = Yolov5DetectionModel(
   model_path="last.pt",
   confidence_threshold=0.3,
   device="cpu",
)

result = get_sliced_prediction(
    "test_data/2.jpg",
    detection_model,
    slice_height = 256,
    slice_width = 256,
    overlap_height_ratio = 0.8,
    overlap_width_ratio = 0.8
)
result.export_visuals(export_dir="demo_data/")
Image("demo_data/prediction_visual.png")

Sahi Algoritması ile ilgili Örnek Proje:

Referanslar:

You might also like...
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

Vehicle Detection Using Deep Learning and YOLO Algorithm
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Comments
  • dataset github release uzerinden indirebilir

    dataset github release uzerinden indirebilir

    @kadirnar oncelikle proje cok basarili, eline saglik 💯

    github repolarinda yeni release olustururken, dosya basina max 2gb limit ile dosya yuklemene izin veriyor. senin widerface train/val/test splitleri bu limitin altinda kaliyor. github release uzerinden host ederek google drive'in indirme limitinden kurtulabilirsin 👍

    enhancement good first issue 
    opened by fcakyon 9
  • reponun secretslarina PYPI_API_TOKEN eklemek gerekiyor

    reponun secretslarina PYPI_API_TOKEN eklemek gerekiyor

    Merhaba @kadirnar, tag sorunu cozulmus, simdi su hatayi veriyor action:

    Warning:  It looks like you are trying to use an API token to authenticate in the package index and your token value does not start with "pypi-" as it typically should. This may cause an authentication error. Please verify that you have copied your token properly if such an error occurs.
    

    Bu warning yanlis tokeni kopyalamis olabilecegini gosteriyor.

    Error during upload. Retry with the --verbose option for more details.
    HTTPError: 403 Forbidden from https://upload.pypi.org/legacy/
    Invalid or non-existent authentication information. See https://pypi.org/help/#invalid-auth for more information.
    

    Bu hata gecerli bir api token verilmedigini gosteriyor.

    https://pypi.org/ uzerinden API_TOKEN uretip bu reponun secretlarina PYPI_API_TOKEN adiyla dogru sekilde ekledin mi?

    bug 
    opened by fcakyon 3
  • yeni bir tag ile release almak gerekiyor

    yeni bir tag ile release almak gerekiyor

    @kadirnar tag 0.0.1 hatali oldugu oldugu icin bu tag ile pypi publish hata veriyor: https://github.com/kadirnar/wideryolo/actions/runs/1604116696

    yeni bir tag ile (0.0.5) release alarak pypi'den hatasiz pypi publish alabilirsin.

    enhancement 
    opened by fcakyon 0
Owner
Kadir Nar
Kadir Nar
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
End-to-end image segmentation kit based on PaddlePaddle.

English | 简体中文 PaddleSeg PaddleSeg has released the new version including the following features: Our team won the 6.2k Jan 02, 2023

Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022