In this project, we create and implement a deep learning library from scratch.

Related tags

Deep LearningARA
Overview

ARA

In this project, we create and implement a deep learning library from scratch.

Table of Contents

About The Project

Deep learning can be considered as a subset of machine learning. It is a field that is based on learning and improving on its own by examining computer algorithms. Deep learning works with artificial neural networks consisting of many layers. This project, which is creating a Deep Learning Library from scratch, can be further implemented in various kinds of projects that involve Deep Learning. Which include, but are not limited to applications in Image, Natural Language and Speech processing, among others.

Aim

To implement a deep learning library from scratch.

Tech Stack

Technologies used in the project:

  • Python and numpy, pandas, matplotlib
  • Google Colab

File Structure

.
├── code
|   └── main.py                                   #contains the main code for the library
├── resources                                     #Notes 
|   ├── ImprovingDeepNeuralNetworks
|   |   ├── images
|   |   |   ├── BatchvsMiniBatch.png
|   |   |   ├── Bias.png
|   |   |   └── EWG.png
|   |   └── notes.md
|   ├── Course1.md                               
|   ├── accuracy.jpg
|   ├── error.jpg
|   └── grad_des_graph.jpg
├── LICENSE.txt
├── ProjectReport.pdf                            #Project Report
└── README.md                                    #Readme

Approach

The approach of the project is to basically create a deep learning library, as stated before. The aim of the project was to implement various deep learning algorithms, in order to drive a deep neural network and hence,create a deep learning library, which is modular,and driven on user input so that it can be applied for various deep learning processes, and to train and test it against a model.

Theory

A neural network is a network or circuit of neurons, or in a modern sense, an artificial neural network, composed of artificial neurons or nodes.

There are different types of Neural Networks

  • Standard Neural Networks
  • Convolutional Neural Networks
  • Recurring Neural Networks

Loss Function:

Loss function is defined so as to see how good the output ŷ is compared to output label y.

Cost Function :

Cost Function quantifies the error between predicted values and expected values.

Gradient Descent : -

Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function.

Getting Started

Prerequisites

  • Object oriented programming in Python

  • Linear Algebra

  • Basic knowledge of Neural Networks

  • Python 3.6 and above

    You can visit the Python Download Guide for the installation steps.

  • Install numpy next

pip install numpy

Installation

  1. Clone the repo
git clone gi[email protected]:aayushmehta123/sra_eklavya_deeplearning_library.git

Results

Result

Results obtained during training: error (where Y-axis represents the value of the cost function and X axis represents the number of iterations) accuracy (where Y-axis represents the accuracy of the prediction wrt the labels and X-axis represents the number of iterations)

Future Work

  • Short term
    • Adding class for normalization and regularization
  • Near Future
    • Addition of support for linear regression
    • Addition of classes for LSTM and GRU blocks
  • Future goal
    • Addition of algorithms to support CNN models.
    • Addition of more Machine Learning algorithms
    • Include algorithms to facilitate Image Recognition, Machine Translation and Natural Language Processing

Troubleshooting

  • Numpy library not working so we shifted workspace to colab

Contributors

Acknowledgements

Resources

License

Describe your License for your project.

Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021