A universal framework for learning timestamp-level representations of time series

Related tags

Deep Learningts2vec
Overview

TS2Vec

This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical Contrastive Loss.

Requirements

The recommended requirements for TS2Vec are specified as follows:

  • Python 3.8
  • scipy==1.6.1
  • torch==1.8.1
  • numpy==1.19.2
  • pandas==1.0.1
  • scikit_learn==0.24.1

The dependencies can be installed by:

pip install -r requirements.txt

Data

The datasets can be obtained and put into datasets/ folder in the following way:

  • 128 UCR datasets should be put into datasets/UCR/ so that each data file can be located by datasets/UCR/<dataset_name>/<dataset_name>_*.csv.
  • 30 UEA datasets should be put into datasets/UEA/ so that each data file can be located by datasets/UEA/<dataset_name>/<dataset_name>_*.arff.
  • 3 ETT datasets should be placed at datasets/ETTh1.csv, datasets/ETTh2.csv and datasets/ETTm1.csv.
  • Electricity dataset should be resampled into hourly data of 321 clients over the last 3 years and placed at datasets/electricity.csv.

Usage

To train and evaluate TS2Vec on a dataset, run the following command:

python train.py <dataset_name> <run_name> --archive <archive> --batch-size <batch_size> --repr-dims <repr_dims> --gpu <gpu> --eval

The detailed descriptions about the arguments are as following:

Parameter name Description of parameter
dataset_name The dataset name
run_name The folder name used to save model, output and evaluation metrics. This can be set to any word
archive The archive name that the dataset belongs to. This can be set to UCR, UEA, forecast_csv or forecast_csv_univar
batch_size The batch size (defaults to 8)
repr_dims The representation dimensions (defaults to 320)
gpu The gpu no. used for training and inference (defaults to 0)
eval Whether to perform evaluation after training

(For descriptions of more arguments, run python train.py -h.)

After training and evaluation, the trained encoder, output and evaluation metrics can be found in training/DatasetName__RunName_Date_Time/.

Scripts: The scripts for reproduction are provided in scripts/ folder.

Code Example

from ts2vec import TS2Vec
import datautils

# Load the ECG200 dataset from UCR archive
train_data, train_labels, test_data, test_labels = datautils.load_UCR('ECG200')
# (Both train_data and test_data have a shape of n_instances x n_timestamps x n_features)

# Train a TS2Vec model
model = TS2Vec(
    input_dims=1,
    device=0,
    output_dims=320
)
loss_log = model.fit(
    train_data,
    verbose=True
)

# Compute timestamp-level representations for test set
test_repr = model.encode(test_data)  # n_instances x n_timestamps x output_dims

# Compute instance-level representations for test set
test_repr = model.encode(test_data, encoding_window='full_series')  # n_instances x output_dims

# Sliding inference for test set
test_repr = model.encode(
    test_data,
    casual=True,
    sliding_length=1,
    sliding_padding=50
)  # n_instances x n_timestamps x output_dims
# (The timestamp t's representation vector is computed using the observations located in [t-50+1, t])
Owner
Zhihan Yue
Zhihan Yue
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022