BC3407-Group-5-Project - BC3407 Group Project With Python

Overview

BC3407-Group-5-Project

As the world struggles to contain the ever-changing variants of COVID-19, healthcare industry is facing tremendous stress from issues arising from different aspects. One significant issue is on resource allocation and utilization. Building additional hospital facility may not be a viable solution in a land scarce country like Singapore. One long standing problem among resource utilization is due to missed appointments. When patients do not show up following their appointment time, the missed appointment results in a waste of resources that have been scheduled and planned. There has not been good solution in reducing the no-show rates. In some, the rates are not even been tracked or computed.

You are to create a Python-based program that can be useful for healthcare industry in tackling this issue. This program is a prototype or proof-of-concept to path the implementation for subsequent development solution to be integrated to the existing system. You are given a sample dataset to start with. It comes with past records of patients who show-up or did not show-up for the appointment in a clinic. You can use it as a start, to develop a suitable solution to provide insights to healthcare professionals. The solution can be a dashboard, web-based or command prompt program. The objective is to apply what you have learnt in this course into this problem domain.

The following table displays the first 5 records from the attached dataset “appointmentData.csv”. It includes the age and gender information of patients. Followed by the time they registered for the appointment and the appointment time details. The day name of appointment is reflected. The other details like their health condition, and other relevant features are also captured. The last column “Show Up” denotes if the patient shows up for the medical appointment.

image

Below are some questions you can try to answer or features you can try to include, you can address one or more of the following or suggest other relevant questions:

  1.     How is the overall picture of no shows over the period?
    
  2.     No-show made up of how many percent of the given data?
    
  3.     What kind of people or age group likely to no-show? Or it’s random?
    
  4.     Does sending reminder helps with reducing no-show?
    
  5.     Provide appropriate dashboard or visualization features to summarize the given data set for viewing.
    
  6.     Suggest or implement suitable features that can help with reducing no-show or highlight patients more likely to no-show with additional reminders or etc?
    

Alternatively, you can look for additional dataset that can help with understanding or tackling this issue or for better resource planning in healthcare. For example, the healthcare resources data, infection rates, chronic disease rates etc. You can make assumptions on information not stated in this requirements, or target a certain specialist clinic.

All work must be done in the Python programming language.

Deliverables: Prepare a zip file (in .zip format only) containing the relevant deliverables below:

  • Report: One word or pdf file containing the proof-of-concept prototype with the following content: -- Work/responsibility distribution. Which team members in charge of which part of the program. -- Objective of the project and how it addresses the issue. -- Features/Functionalities designed for the prototype. -- User manual with print screens from the prototype to illustrate how to use this project's program; consider different user roles. -- Include the links to recording, i,e. the hyperlinks to every group member’s individual recorded videos. Do not submit video files, submit only hyperlink.
  • One folder containing additional dataset (if any), all working files.

One group submit one copy of the above. Submission box will be opened in Week 11. All works submitted will go through plagiarism checker. Submitting work done by others will result in failing the module directly.

No presentation nor lesson on week 13, you are to prepare the recording beforehand and submit before due date. Recording replaces class presentation. The duration of each group member’s individual recording should be about 2 to 3 minutes maximum. You are advised to adhere to the time limit strictly or penalty will be imposed. In the individual video, you are required to reflect on your contribution to the group project, what you have done for the project, what have you learnt from the project. Each group member will record his/her own video and ensure that the hyperlink to the video is included on the first page of the report submitted by the group. You can use Zoom, Teams or YouTube for recording. If you use other software to record into mp4 file, upload online to Youtube, OneDrive or other cloud storage (Do not submit video files). In the case of Youtube, indicate as restricted, and submit only the link information. Include the link information (one link for each team member) in your report.

You are required to submit a peer evaluation form online individually at the end of the semester. Individual peer evaluation submission is compulsory for all team members. An online peer evaluation system will be opened nearer to the submission date.

Good project outcome is the end product of good teamwork. We hope to see all team members contribute equally. The peer evaluation will be considered in evaluating the project grade should the contribution be significantly unequal. Submission will be kept confidential.

Due Date: Week 13 Wednesday (13 Apr 2022, 7 p.m.)

Reference: Zoom Recording: Registering your NTU Zoom account (If you have not done so. Quick Start Guide for NTU Zoom Account.pdf) Zoom Login & Create Meeting (See Quick Start Guide for Online Meetings with Zoom.pdf) Video Guide on Recording Teams Recording: Zoom Login & Create Meeting (See Quick Start Guide for Online Meetings with Zoom.pdf) Online Guide on Recording: https://support.microsoft.com/en-us/office/record-a-meeting-in-teams-34dfbe7f-b07d-4a27-b4c6-de62f1348c24

A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Age Progression/Regression by Conditional Adversarial Autoencoder

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre

Zhifei Zhang 603 Dec 22, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023