Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Related tags

Deep Learninguclser20
Overview

Unsupervised Contrastive Learning of
Sound Event Representations

This repository contains the code for the following paper. If you use this code or part of it, please cite:

Eduardo Fonseca, Diego Ortego, Kevin McGuinness, Noel E. O'Connor, Xavier Serra, "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

arXiv slides poster blog post video

We propose to learn sound event representations using the proxy task of contrasting differently augmented views of sound events, inspired by SimCLR [1]. The different views are computed by:

  • sampling TF patches at random within every input clip,
  • mixing resulting patches with unrelated background clips (mix-back), and
  • other data augmentations (DAs) (RRC, compression, noise addition, SpecAugment [2]).

Our proposed system is illustrated in the figure.

system

Our results suggest that unsupervised contrastive pre-training can mitigate the impact of data scarcity and increase robustness against noisy labels. Please check our paper for more details, or have a quicker look at our slide deck, poster, blog post, or video presentation (see links above).

This repository contains the framework that we used for our paper. It comprises the basic stages to learn an audio representation via unsupervised contrastive learning, and then evaluate the representation via supervised sound event classifcation. The system is implemented in PyTorch.

Dependencies

This framework is tested on Ubuntu 18.04 using a conda environment. To duplicate the conda environment:

conda create --name <envname> --file spec-file.txt

Directories and files

FSDnoisy18k/ includes folders to locate the FSDnoisy18k dataset and a FSDnoisy18k.py to load the dataset (train, val, test), including the data loader for contrastive and supervised training, applying transforms or mix-back when appropriate
config/ includes *.yaml files defining parameters for the different training modes
da/ contains data augmentation code, including augmentations mentioned in our paper and more
extract/ contains feature extraction code. Computes an .hdf5 file containing log-mel spectrograms and associated labels for a given subset of data
logs/ folder for output logs
models/ contains definitions for the architectures used (ResNet-18, VGG-like and CRNN)
pth/ contains provided pre-trained models for ResNet-18, VGG-like and CRNN
src/ contains functions for training and evaluation in both supervised and unsupervised fashion
main_train.py is the main script
spec-file.txt contains conda environment specs

Usage

(0) Download the dataset

Download FSDnoisy18k [3] from Zenodo through the dataset companion site, unzip it and locate it in a given directory. Fix paths to dataset in ctrl section of *.yaml. It can be useful to have a look at the different training sets of FSDnoisy18k: a larger set of noisy labels and a small set of clean data [3]. We use them for training/validation in different ways.

(1) Prepare the dataset

Create an .hdf5 file containing log-mel spectrograms and associated labels for each subset of data:

python extract/wav2spec.py -m test -s config/params_unsupervised_cl.yaml

Use -m with train, val or test to extract features from each subset. All the extraction parameters are listed in params_unsupervised_cl.yaml. Fix path to .hdf5 files in ctrl section of *.yaml.

(2) Run experiment

Our paper comprises three training modes. For convenience, we provide yaml files defining the setup for each of them.

  1. Unsupervised contrastive representation learning by comparing differently augmented views of sound events. The outcome of this stage is a trained encoder to produce low-dimensional representations. Trained encoders are saved under results_models/ using a folder name based on the string experiment_name in the corresponding yaml (make sure to change it).
CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_unsupervised_cl.yaml &> logs/output_unsup_cl.out
  1. Evaluation of the representation using a previously trained encoder. Here, we do supervised learning by minimizing cross entropy loss without data agumentation. Currently, we load the provided pre-trained models sitting in pth/ (you can change this in main_train.py, search for select model). We follow two evaluation methods:

    • Linear Evaluation: train an additional linear classifier on top of the pre-trained unsupervised embeddings.

      CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_supervised_lineval.yaml &> logs/output_lineval.out
      
    • End-to-end Fine Tuning: fine-tune entire model on two relevant downstream tasks after initializing with pre-trained weights. The two downstream tasks are:

      • training on the larger set of noisy labels and validate on train_clean. This is chosen by selecting train_on_clean: 0 in the yaml.
      • training on the small set of clean data (allowing 15% for validation). This is chosen by selecting train_on_clean: 1 in the yaml.

      After choosing the training set for the downstream task, run:

      CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_supervised_finetune.yaml &> logs/output_finetune.out
      

The setup in the yaml files should provide the best results reported in our paper. JFYI, the main flags that determine the training mode are downstream, lin_eval and method in the corresponding yaml (they are already adequately set in each yaml).

(3) See results:

Check the logs/*.out for printed results at the end. Main evaluation metric is balanced (macro) top-1 accuracy. Trained models are saved under results_models/models* and some metrics are saved under results_models/metrics*.

Model Zoo

We provide pre-trained encoders as described in our paper, for ResNet-18, VGG-like and CRNN architectures. See pth/ folder. Note that better encoders could likely be obtained through a more exhaustive exploration of the data augmentation compositions, thus defining a more challenging proxy task. Also, we trained on FSDnoisy18k due to our limited compute resources at the time, yet this framework can be directly applied to other larger datasets such as FSD50K or AudioSet.

Citation

@inproceedings{fonseca2021unsupervised,
  title={Unsupervised Contrastive Learning of Sound Event Representations},
  author={Fonseca, Eduardo and Ortego, Diego and McGuinness, Kevin and O'Connor, Noel E. and Serra, Xavier},
  booktitle={2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  year={2021},
  organization={IEEE}
}

Contact

You are welcome to contact [email protected] should you have any question/suggestion. You can also create an issue.

Acknowledgment

This work is a collaboration between the MTG-UPF and Dublin City University's Insight Centre. This work is partially supported by Science Foundation Ireland (SFI) under grant number SFI/15/SIRG/3283 and by the Young European Research University Network under a 2020 mobility award. Eduardo Fonseca is partially supported by a Google Faculty Research Award 2018. The authors are grateful for the GPUs donated by NVIDIA.

References

[1] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations,” in Int. Conf. on Mach. Learn. (ICML), 2020

[2] Park et al., SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. InterSpeech 2019

[3] E. Fonseca, M. Plakal, D. P. W. Ellis, F. Font, X. Favory, X. Serra, "Learning Sound Event Classifiers from Web Audio with Noisy Labels", In proceedings of ICASSP 2019, Brighton, UK

Owner
Eduardo Fonseca
Returning research intern at Google Research | PhD candidate at Music Technology Group, Universitat Pompeu Fabra
Eduardo Fonseca
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022