Improving Deep Network Debuggability via Sparse Decision Layers

Overview

Improving Deep Network Debuggability via Sparse Decision Layers

This repository contains the code for our paper:

Leveraging Sparse Linear Layers for Debuggable Deep Networks
Eric Wong*, Shibani Santurkar*, Aleksander Madry
Paper: http://arxiv.org/abs/2105.04857
Blog posts: Part1 and Part2

Pipeline overview

@article{wong2021leveraging,
  title={Leveraging Sparse Linear Layers for Debuggable Deep Networks},
  author={Wong, Eric and Santurkar, Shibani and M{\k{a}}dry, Aleksander},
  journal={arXiv preprint arXiv:2105.04857},
  year={2021}
}

Getting started

Our code relies on the MadryLab public robustness library, as well as the glm_saga library which will be automatically installed when you follow the instructions below. The glm_saga library contains a standalone implementation of our sparse GLM solver.

  1. Clone our repo: git clone https://github.com/microsoft/DebuggableDeepNetworks.git

  2. Setup the lucent submodule using: git submodule update --init --recursive

  3. We recommend using conda for dependencies:

    conda env create -f environment.yml
    conda activate debuggable
    

Training sparse decision layers

Contents:

  • main.py fits a sparse decision layer on top of the deep features of the specified pre-trained (language/vision) deep network
  • helpers/ has some helper functions for loading datasets, models, and features
  • language/ has some additional code for handling language models and datasets

To run the settings in our paper, you can use the following commands:

# Sentiment classification
python main.py --dataset sst --dataset-path   --dataset-type language --model-path barissayil/bert-sentiment-analysis-sst --arch bert --out-path ./tmp/sst/ --cache

# Toxic comment classification (biased)
python main.py --dataset jigsaw-toxic --dataset-path   --dataset-type language --model-path unitary/toxic-bert --arch bert --out-path ./tmp/jigsaw-toxic/ --cache --balance

# Toxic comment classification (unbiased)
python main.py --dataset jigsaw-alt-toxic --dataset-path   --dataset-type language --model-path unitary/unbiased-toxic-roberta --arch roberta --out-path ./tmp/unbiased-jigsaw-toxic/ --cache --balance

# Places-10 
python main.py --dataset places-10 --dataset-path  --dataset-type vision --model-path  --arch resnet50 --out-path ./tmp/places/ --cache

# ImageNet
python main.py --dataset imagenet --dataset-path  --dataset-type vision --model-path  --arch resnet50 --out-path ./tmp/imagenet/ --cache

Interpreting deep features

After fitting a sparse GLM with one of the above commands, we provide some notebooks for inspecting and visualizing the resulting features. See inspect_vision_models.ipynb and inspect_language_models.ipynb for the vision and language settings respectively.

Maintainers

Owner
Madry Lab
Towards a Principled Science of Deep Learning
Madry Lab
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022