CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

Overview

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation)

teaser

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation
CVPR 2021, oral presentation
Xingran Zhou, Bo Zhang, Ting Zhang, Pan Zhang, Jianmin Bao, Dong Chen, Zhongfei Zhang, Fang Wen

Paper | Slides

Abstract

We present the full-resolution correspondence learning for cross-domain images, which aids image translation. We adopt a hierarchical strategy that uses the correspondence from coarse level to guide the fine levels. At each hierarchy, the correspondence can be efficiently computed via PatchMatch that iteratively leverages the matchings from the neighborhood. Within each PatchMatch iteration, the ConvGRU module is employed to refine the current correspondence considering not only the matchings of larger context but also the historic estimates. The proposed CoCosNet v2, a GRU-assisted PatchMatch approach, is fully differentiable and highly efficient. When jointly trained with image translation, full-resolution semantic correspondence can be established in an unsupervised manner, which in turn facilitates the exemplar-based image translation. Experiments on diverse translation tasks show that CoCosNet v2 performs considerably better than state-of-the-art literature on producing high-resolution images.

Installation

First please install dependencies for the experiment:

pip install -r requirements.txt

We recommend to install Pytorch version after Pytorch 1.6.0 since we made use of automatic mixed precision for accelerating. (we used Pytorch 1.7.0 in our experiments)

Prepare the dataset

First download the Deepfashion dataset (high resolution version) from this link. Note the file name is img_highres.zip. Unzip the file and rename it as img.
If the password is necessary, please contact this link to access the dataset.
We use OpenPose to estimate pose of DeepFashion(HD). We offer the keypoints detection results used in our experiment in this link. Download and unzip the results file.
Since the original resolution of DeepfashionHD is 750x1101, we use a Python script to process the images to the resolution 512x512. You can find the script in data/preprocess.py. Note you need to download our train-val split lists train.txt and val.txt from this link in this step.
Download the train-val lists from this link, and the retrival pair lists from this link. Note train.txt and val.txt are our train-val lists. deepfashion_ref.txt, deepfashion_ref_test.txt and deepfashion_self_pair.txt are the paring lists used in our experiment. Download them all and move below the folder data/.
Finally create the root folder deepfashionHD, and move the folders img and pose below it. Now the the directory structure is like:

deepfashionHD
│
└─── img
│   │
│   └─── MEN
│   │   │   ...
│   │
│   └─── WOMEN
│       │   ...
│   
└─── pose
│   │
│   └─── MEN
│   │   │   ...
│   │
│   └─── WOMEN
│       │   ...

Inference Using Pretrained Model

The inference results are saved in the folder checkpoints/deepfashionHD/test. Download the pretrained model from this link.
Move the models below the folder checkpoints/deepfashionHD. Then run the following command.

python test.py --name deepfashionHD --dataset_mode deepfashionHD --dataroot dataset/deepfashionHD --PONO --PONO_C --no_flip --batchSize 8 --gpu_ids 0 --netCorr NoVGGHPM --nThreads 16 --nef 32 --amp --display_winsize 512 --iteration_count 5 --load_size 512 --crop_size 512

The inference results are saved in the folder checkpoints/deepfashionHD/test.

Training from scratch

Make sure you have prepared the DeepfashionHD dataset as the instruction.
Download the pretrained VGG model from this link, move it to vgg/ folder. We use this model to calculate training loss.

Run the following command for training from scratch.

python train.py --name deepfashionHD --dataset_mode deepfashionHD --dataroot dataset/deepfashionHD --niter 100 --niter_decay 0 --real_reference_probability 0.0 --hard_reference_probability 0.0 --which_perceptual 4_2 --weight_perceptual 0.001 --PONO --PONO_C --vgg_normal_correct --weight_fm_ratio 1.0 --no_flip --video_like --batchSize 16 --gpu_ids 0,1,2,3,4,5,6,7 --netCorr NoVGGHPM --match_kernel 1 --featEnc_kernel 3 --display_freq 500 --print_freq 50 --save_latest_freq 2500 --save_epoch_freq 5 --nThreads 16 --weight_warp_self 500.0 --lr 0.0001 --nef 32 --amp --weight_warp_cycle 1.0 --display_winsize 512 --iteration_count 5 --temperature 0.01 --continue_train --load_size 550 --crop_size 512 --which_epoch 15

Note that --dataroot parameter is your DeepFashionHD dataset root, e.g. dataset/DeepFashionHD.
We use 8 32GB Tesla V100 GPUs to train the network. You can set batchSize to 16, 8 or 4 with fewer GPUs and change gpu_ids.

Citation

If you use this code for your research, please cite our papers.

@inproceedings{zhou2021full,
  title={CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation},
  author={Zhou, Xingran and Zhang, Bo and Zhang, Ting and Zhang, Pan and Bao, Jianmin and Chen, Dong and Zhang, Zhongfei and Wen, Fang},
  booktitle={CVPR},
  year={2021}
}

Acknowledgments

This code borrows heavily from CocosNet and DeepPruner. We also thank SPADE and RAFT.

License

The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022