CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

Overview

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation)

teaser

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation
CVPR 2021, oral presentation
Xingran Zhou, Bo Zhang, Ting Zhang, Pan Zhang, Jianmin Bao, Dong Chen, Zhongfei Zhang, Fang Wen

Paper | Slides

Abstract

We present the full-resolution correspondence learning for cross-domain images, which aids image translation. We adopt a hierarchical strategy that uses the correspondence from coarse level to guide the fine levels. At each hierarchy, the correspondence can be efficiently computed via PatchMatch that iteratively leverages the matchings from the neighborhood. Within each PatchMatch iteration, the ConvGRU module is employed to refine the current correspondence considering not only the matchings of larger context but also the historic estimates. The proposed CoCosNet v2, a GRU-assisted PatchMatch approach, is fully differentiable and highly efficient. When jointly trained with image translation, full-resolution semantic correspondence can be established in an unsupervised manner, which in turn facilitates the exemplar-based image translation. Experiments on diverse translation tasks show that CoCosNet v2 performs considerably better than state-of-the-art literature on producing high-resolution images.

Installation

First please install dependencies for the experiment:

pip install -r requirements.txt

We recommend to install Pytorch version after Pytorch 1.6.0 since we made use of automatic mixed precision for accelerating. (we used Pytorch 1.7.0 in our experiments)

Prepare the dataset

First download the Deepfashion dataset (high resolution version) from this link. Note the file name is img_highres.zip. Unzip the file and rename it as img.
If the password is necessary, please contact this link to access the dataset.
We use OpenPose to estimate pose of DeepFashion(HD). We offer the keypoints detection results used in our experiment in this link. Download and unzip the results file.
Since the original resolution of DeepfashionHD is 750x1101, we use a Python script to process the images to the resolution 512x512. You can find the script in data/preprocess.py. Note you need to download our train-val split lists train.txt and val.txt from this link in this step.
Download the train-val lists from this link, and the retrival pair lists from this link. Note train.txt and val.txt are our train-val lists. deepfashion_ref.txt, deepfashion_ref_test.txt and deepfashion_self_pair.txt are the paring lists used in our experiment. Download them all and move below the folder data/.
Finally create the root folder deepfashionHD, and move the folders img and pose below it. Now the the directory structure is like:

deepfashionHD
│
└─── img
│   │
│   └─── MEN
│   │   │   ...
│   │
│   └─── WOMEN
│       │   ...
│   
└─── pose
│   │
│   └─── MEN
│   │   │   ...
│   │
│   └─── WOMEN
│       │   ...

Inference Using Pretrained Model

The inference results are saved in the folder checkpoints/deepfashionHD/test. Download the pretrained model from this link.
Move the models below the folder checkpoints/deepfashionHD. Then run the following command.

python test.py --name deepfashionHD --dataset_mode deepfashionHD --dataroot dataset/deepfashionHD --PONO --PONO_C --no_flip --batchSize 8 --gpu_ids 0 --netCorr NoVGGHPM --nThreads 16 --nef 32 --amp --display_winsize 512 --iteration_count 5 --load_size 512 --crop_size 512

The inference results are saved in the folder checkpoints/deepfashionHD/test.

Training from scratch

Make sure you have prepared the DeepfashionHD dataset as the instruction.
Download the pretrained VGG model from this link, move it to vgg/ folder. We use this model to calculate training loss.

Run the following command for training from scratch.

python train.py --name deepfashionHD --dataset_mode deepfashionHD --dataroot dataset/deepfashionHD --niter 100 --niter_decay 0 --real_reference_probability 0.0 --hard_reference_probability 0.0 --which_perceptual 4_2 --weight_perceptual 0.001 --PONO --PONO_C --vgg_normal_correct --weight_fm_ratio 1.0 --no_flip --video_like --batchSize 16 --gpu_ids 0,1,2,3,4,5,6,7 --netCorr NoVGGHPM --match_kernel 1 --featEnc_kernel 3 --display_freq 500 --print_freq 50 --save_latest_freq 2500 --save_epoch_freq 5 --nThreads 16 --weight_warp_self 500.0 --lr 0.0001 --nef 32 --amp --weight_warp_cycle 1.0 --display_winsize 512 --iteration_count 5 --temperature 0.01 --continue_train --load_size 550 --crop_size 512 --which_epoch 15

Note that --dataroot parameter is your DeepFashionHD dataset root, e.g. dataset/DeepFashionHD.
We use 8 32GB Tesla V100 GPUs to train the network. You can set batchSize to 16, 8 or 4 with fewer GPUs and change gpu_ids.

Citation

If you use this code for your research, please cite our papers.

@inproceedings{zhou2021full,
  title={CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation},
  author={Zhou, Xingran and Zhang, Bo and Zhang, Ting and Zhang, Pan and Bao, Jianmin and Chen, Dong and Zhang, Zhongfei and Wen, Fang},
  booktitle={CVPR},
  year={2021}
}

Acknowledgments

This code borrows heavily from CocosNet and DeepPruner. We also thank SPADE and RAFT.

License

The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
Fang Zhonghao 13 Nov 19, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022