The hippynn python package - a modular library for atomistic machine learning with pytorch.

Related tags

Deep Learninghippynn
Overview

The hippynn python package - a modular library for atomistic machine learning with pytorch.

We aim to provide a powerful library for the training of atomistic (or physical point-cloud) machine learning. We want entry-level users to be able to efficiently train models to millions of datapoints, and a modular structure for extension or contribution.

While hippynn's development so-far has centered around the HIP-NN architecture, don't let that discourage you if you are performing research with another model. Get in touch, and let's work together to provide a high-quality implementation of your work, either as a contribution or an interface extension to your own package.

Features:

Modular set of pytorch layers for atomistic operations

  • Atomistic operations can be tricky to write in native pytorch. Most operations provided here support linear-scaling models.
  • Model energy, force charge & charge moments, bond orders, and more!
  • nn.Modules are written with minimal reference to the rest of the library; if you want to use them in your scripts without using the rest of the features provided here -- no problem!

Graph level API for simple and flexible construction of models from pytorch components.

  • Build models based on the abstract physics/mathematics of the problem, without having to think about implementation details.
  • Graph nodes support native python syntax, for example different forms of loss can be directly added.
  • Link predicted values in the model with a database entry to compare predicted and true values
  • IndexType logic records metadata about tensor structure, and provides automatic conversion to compatible structures when possible.
  • Graph API is independent of module implementation.

Plot level API for tracking your training.

  • Using the graph API, define quantities to evaluate before, during, or after training as figures using matplotlib.

Training & Experiment API

  • Integrated with graph level API
  • Pretty-printing loss metrics, generating plots periodically
  • Callbacks and checkpointing

Custom Kernels for fast execution

  • Certain operations are not efficiently written in pure pytorch, we provide alternative implementations with numba
  • These are directly linked in with pytorch Autograd -- use them like native pytorch functions.
  • These provide advantages in memory footprint and speed
  • Includes CPU and GPU execution for custom kernels

Interfaces

  • ASE: Define ASE calculators based on the graph-level API.
  • PYSEQM: Use PYSEQM calculations as nodes in a graph.

Installation

  • Clone this repository and navigate into it.
  • Run pip install .

If you fee like tinkering, do an editable install: pip install -e .

You can install using all optional dependencies from pip with: pip install -e .[full]

Notes

  • Install dependencies with pip from requirements.txt .
  • Install dependencies with conda from conda_requirements.txt .
  • If you don't want pip to install them, conda install from file before installing hippynn. You may want to use -c pytorch for the pytorch channel. For ase, you may want to use -c conda-forge.
  • Optional dependencies are in optional_dependencies.txt

We are currently under development. At the moment you should be prepared for breaking changes -- keep track of what version you are using if you need to maintain consistency.

As we clean up the rough edges, we are preparing a manuscript. If, in the mean time, you are using hippynn in your work, please cite this repository and the HIP-NN paper:

Lubbers, N., Smith, J. S., & Barros, K. (2018). Hierarchical modeling of molecular energies using a deep neural network. The Journal of chemical physics, 148(24), 241715.

See AUTHORS.txt for information on authors.

See LICENSE.txt for licensing information. hippynn is licensed under the BSD-3 license.

Triad National Security, LLC (Triad) owns the copyright to hippynn, which it identifies as project number LA-CC-19-093.

Copyright 2019. Triad National Security, LLC. All rights reserved. This program was produced under U.S. Government contract 89233218CNA000001 for Los Alamos National Laboratory (LANL), which is operated by Triad National Security, LLC for the U.S. Department of Energy/National Nuclear Security Administration. All rights in the program are reserved by Triad National Security, LLC, and the U.S. Department of Energy/National Nuclear Security Administration. The Government is granted for itself and others acting on its behalf a nonexclusive, paid-up, irrevocable worldwide license in this material to reproduce, prepare derivative works, distribute copies to the public, perform publicly and display publicly, and to permit others to do so.

Owner
Los Alamos National Laboratory
Los Alamos National Laboratory
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022