Training Very Deep Neural Networks Without Skip-Connections

Overview

DiracNets

v2 update (January 2018):

The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without weight decay. This allowed us to significantly simplify the network, which is now folds into a simple chain of convolution-ReLU layers, like VGG. On ImageNet DiracNet-18 and DiracNet-34 closely match corresponding ResNet with the same number of parameters.

See v1 branch for DiracNet-v1.


PyTorch code and models for DiracNets: Training Very Deep Neural Networks Without Skip-Connections

https://arxiv.org/abs/1706.00388

Networks with skip-connections like ResNet show excellent performance in image recognition benchmarks, but do not benefit from increased depth, we are thus still interested in learning actually deep representations, and the benefits they could bring. We propose a simple weight parameterization, which improves training of deep plain (without skip-connections) networks, and allows training plain networks with hundreds of layers. Accuracy of our proposed DiracNets is close to Wide ResNet (although DiracNets need more parameters to achieve it), and we are able to match ResNet-1000 accuracy with plain DiracNet with only 28 layers. Also, the proposed Dirac weight parameterization can be folded into one filter for inference, leading to easily interpretable VGG-like network.

DiracNets on ImageNet:

TL;DR

In a nutshell, Dirac parameterization is a sum of filters and scaled Dirac delta function:

conv2d(x, alpha * delta + W)

Here is simplified PyTorch-like pseudocode for the function we use to train plain DiracNets (with weight normalization):

def dirac_conv2d(input, W, alpha, beta)
    return F.conv2d(input, alpha * dirac(W) + beta * normalize(W))

where alpha and beta are per-channel scaling multipliers, and normalize does l_2 normalization over each feature plane.

Code

Code structure:

├── README.md # this file
├── diracconv.py # modular DiracConv definitions
├── test.py # unit tests
├── diracnet-export.ipynb # ImageNet pretrained models
├── diracnet.py # functional model definitions
└── train.py # CIFAR and ImageNet training code

Requirements

First install PyTorch, then install torchnet:

pip install git+https://github.com/pytorch/[email protected]

Install other Python packages:

pip install -r requirements.txt

To train DiracNet-34-2 on CIFAR do:

python train.py --save ./logs/diracnets_$RANDOM$RANDOM --depth 34 --width 2

To train DiracNet-18 on ImageNet do:

python train.py --dataroot ~/ILSVRC2012/ --dataset ImageNet --depth 18 --save ./logs/diracnet_$RANDOM$RANDOM \
                --batchSize 256 --epoch_step [30,60,90] --epochs 100 --weightDecay 0.0001 --lr_decay_ratio 0.1

nn.Module code

We provide DiracConv1d, DiracConv2d, DiracConv3d, which work like nn.Conv1d, nn.Conv2d, nn.Conv3d, but have Dirac-parametrization inside (our training code doesn't use these modules though).

Pretrained models

We fold batch normalization and Dirac parameterization into F.conv2d weight and bias tensors for simplicity. Resulting models are as simple as VGG or AlexNet, having only nonlinearity+conv2d as a basic block.

See diracnets.ipynb for functional and modular model definitions.

There is also folded DiracNet definition in diracnet.py, which uses code from PyTorch model_zoo and downloads pretrained model from Amazon S3:

from diracnet import diracnet18
model = diracnet18(pretrained=True)

Printout of the model above:

DiracNet(
  (features): Sequential(
    (conv): Conv2d (3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))
    (max_pool0): MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), ceil_mode=False)
    (group0.block0.relu): ReLU()
    (group0.block0.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group0.block1.relu): ReLU()
    (group0.block1.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group0.block2.relu): ReLU()
    (group0.block2.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group0.block3.relu): ReLU()
    (group0.block3.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (max_pool1): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
    (group1.block0.relu): ReLU()
    (group1.block0.conv): Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group1.block1.relu): ReLU()
    (group1.block1.conv): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group1.block2.relu): ReLU()
    (group1.block2.conv): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group1.block3.relu): ReLU()
    (group1.block3.conv): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (max_pool2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
    (group2.block0.relu): ReLU()
    (group2.block0.conv): Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group2.block1.relu): ReLU()
    (group2.block1.conv): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group2.block2.relu): ReLU()
    (group2.block2.conv): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group2.block3.relu): ReLU()
    (group2.block3.conv): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (max_pool3): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
    (group3.block0.relu): ReLU()
    (group3.block0.conv): Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group3.block1.relu): ReLU()
    (group3.block1.conv): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group3.block2.relu): ReLU()
    (group3.block2.conv): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group3.block3.relu): ReLU()
    (group3.block3.conv): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (last_relu): ReLU()
    (avg_pool): AvgPool2d(kernel_size=7, stride=7, padding=0, ceil_mode=False, count_include_pad=True)
  )
  (fc): Linear(in_features=512, out_features=1000)
)

The models were trained with OpenCV, so you need to use it too to reproduce stated accuracy.

Pretrained weights for DiracNet-18 and DiracNet-34:
https://s3.amazonaws.com/modelzoo-networks/diracnet18v2folded-a2174e15.pth
https://s3.amazonaws.com/modelzoo-networks/diracnet34v2folded-dfb15d34.pth

Pretrained weights for the original (not folded) model, functional definition only:
https://s3.amazonaws.com/modelzoo-networks/diracnet18-v2_checkpoint.pth
https://s3.amazonaws.com/modelzoo-networks/diracnet34-v2_checkpoint.pth

We plan to add more pretrained models later.

Bibtex

@inproceedings{Zagoruyko2017diracnets,
    author = {Sergey Zagoruyko and Nikos Komodakis},
    title = {DiracNets: Training Very Deep Neural Networks Without Skip-Connections},
    url = {https://arxiv.org/abs/1706.00388},
    year = {2017}}
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022